Towards Sentinel-1 Soil Moisture Data Services: The Approach taken by the Earth Observation Data Centre for Water Resources Monitoring

Wolfgang Wagner wolfgang.wagner@geo.tuwien.ac.at

Department of Geodesy and Geoinformation (GEO) Vienna University of Technology (TU Wien)

Earth Observation Data Centre for Water Resources Monitoring (EODC)

- Sentinel-1 launched on 3 April
 - Sun-synchronous, near-polar, circular orbit
 - 693 km orbit height
 - 98.18° inclination

- 12 day repeat cycle at Equator with one satellite, 175 orbits/cycle.
- SAR Instrument
 - C-band (5.405 GHz)
 - Dual polarisation (HH+HV, VV+VH)
 - 4 exclusive acquisition modes: Stripmap (SM) Interferometric Wide swath (IW) Extra-Wide swath (EW) Wave mode (WV)
- Fixed acquisition plan
 - Unique spatio-temporal coverage

Sentinel-1 Data Volume

- Sentinel-1 Interferometric Wide swath (IW) mode
 - One satellite, over landmasses (IW, 15 minutes duty cycle per orbit)
 - SLC data acquisitions only 3,75 minutes during each duty cycle

Data-volume estimates (Single Polarization, raw format, excl. annotation)							
Product Type	Data rate [MB/s]	Data acq. per orbit	Data volume per orbit	Data volume per day	Data volume per year	Data volume 7.5 years	Data volume 20 years
IW L1 SLC	127.554	3.75 min	28.7 GB	419.0 GB	152.9 TB	1.1 PB	3.1 PB
IW L1 GRD-HR	32.418	15 min	29.2 GB	426.0 GB	156.0 TB	1.2 PB	3.1 PB
IW L1 GRD-MR	5.190	15 min	4.7 GB	68.2 GB	(25.0 TB)	186.7 TB	497.8 TB
IW L1 BRW	0.007	15 min	6.3 MB	92.0 MB	33.6 GB	251.8 GB	671.5 GB
Total	-	-	62.6 GB	913.3 GB	333.9 TB	2.5 PB	6.7 PB

Average Revisit Time with S-1A + S-1B Satellites

Comparable in size to the complete ASAR data volume

Average Revisit time for two Sentinel-1 satellites © ESA

TU Wien Change Detection Method

 Soil moisture retrieval method was developed for ERS scatterometer and later adopted to METOP ASCAT and ENVISAT ASAR

Functional Behaviour

 Mimics a semi-empirical backscatter model with a strong surface-volume interaction term

$$\sigma^{0} = (1 - f_{nt}) \left[\frac{\omega_{tr} \cos\theta}{2} \left(1 - e^{-\frac{2\tau_{tr}}{\cos\theta}} \right) + \sigma_{s}^{0}(\theta) e^{-\frac{2\tau_{tr}}{\cos\theta}} + 2\chi R_{0} \omega_{tr} \tau_{tr} e^{-\frac{2\tau_{tr}}{\cos\theta}} \right] + f_{nt} \frac{\omega_{nt} \cos\theta}{2}$$

Mixing model with fraction of non-transparent (*nt*) and transparent (*tr*) vegetation

Bare soil scattering $\sigma_s^0(\theta)$ modelled with Improved Integral Equation Method I²EM

Interaction term enhanced soil moisture contributions

Sensitivity to Soil Moisture

 The sensitivity describes the signal response to soil moisture changes and depends strongly on land cover

Optical Depth Estimated from Sensitivity

1.5

1.2

1.1

0.1

0.0

See the poster of Mariette Vreugdenhil

80°N

"Linking vegetation parameters derived from active and passive microwave observations"

SAR Backscatter Model

Simplified version of the SCAT backscatter model

$$\sigma^{0}(t,\theta) = \sigma^{0}_{dry}(30) + S \cdot m_{s}(t) + \beta(\theta - 30)$$

ASAR backscatter model parameters and land cover map of Oklahoma, USA.

ENVISAT ASAR Soil Moisture

- Change detection model has been extensively tested for ENVISAT ASAR Global Monitoring (GM) data
 - Full continents (Australia, Africa) have been processed
 - NRT capabilities demonstrated
- Weaknesses
 - Poor temporal coverage
 - High radiometric noise
 - No seasonal vegetation correction
- Strengths
 - High consistence with ASCAT and other global soil moisture products
 - Spatial details not contained in ASCAT and passive sensors

1km ASCAT soil moisture over Africa produced by TU Wien in the ESA funded SHARE & Tigernet projects

From ASCAT and ASAR to Sentinel-1

- Initial Implementation
 - Implementation of ASAR algorithm for Sentinel-1
 - Straight forward from algorithmic point of view
 - Challenging due to high data volume
- Continuous Development & Operations
 - Step-wise improvement of retrieval algorithm
 - Expected challenges
 - Roughness changes at finer scales (e.g. agricultural practices)
 - Higher complexity of vegetation characterisation at finer scale (e.g. wheat versus sugar beet)
 - Comparison with other retrieval algorithms
 - Algorithm ensembles?

Costs & Tasks are too much for one single organisation to stem!

Earth Observation Data Centre for Water Resources Monitoring

An open & international Cooperation

Cooperation Model

Collaborative Infrastructure

Initial IT Infrastructure hosted by TU Wien & ZAMG

Vienna Scientific Cluster

- The VSC-3 is an HPC system consist of 1756 nodes
- Each node is equipped with 2 processors (Intel Xeon 2.6 GHz, 8 cores), 64 GB RAM
- Connected with an Intel QDR-80 dual link high speed infiniband fabric
- Energy efficient cooling will be provided by the oil based
- Amongst the TOP 100-150 supercomputers worldwide

VSC-2

VSC-3

Re-engineering of SAR Processing Line for S1

- Open source code
- Fast parallel processing & efficient data storage
- Fast access in time and spatial domain

7 Continental Grids 2 % Oversampling

Bauer-Marschallinger, B., D. Sabel, W. Wagner (2014) Optimisation of Global Grids for High-Resolution Remote Sensing Data, Computers & Geosciences, in press.

Outlook

- Get EODC started
 - Initial focus will be on community services (EODC Connect/Connect+)
- Open or deepen discussions with potential Cooperation Partners
 - International outreach has started: Germany, Italy, France, Netherlands, Luxemburg, Czech Republic, Morocco, …
- Set up initial IT infrastructure (October 2014 April 2015)
- Establish a Collaborative Ground Segment to ensure
 - Timely access to Sentinel data
 - Be clear on data policy
- Strive to become the Thematic Exploitation Platform for Hydrology
 - Implementation of models on the EODC platform is considered

