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Chapter 1

General introduction

1.1 Background

1.1.1 Importance of streamflow

Streamflow is the spatial integration of runoff and is a
major component of the annual catchment water bal-
ance. Streamflow is composed of a ‘slow’ component
usually referred to as baseflow, which mainly originates
from groundwater storage or other delayed sources (Hall,
1968; Smakhtin, 2001), and a ‘quick’ component called
stormflow or quickflow (Jakeman and Hornberger, 1993).
Stormflow can be generated as overland flow, when the
soil is saturated (saturation overland flow; Dunne and
Black, 1970) or when the rainfall intensity exceeds the
soil’s infiltration capacity (infiltration-excess overland
flow; Horton, 1933), or as subsurface stormflow in the
form of rapid lateral flow above an impervious horizon
(or bedrock) when the groundwater level increases and
subsurface saturated areas become connected (Tromp-
van Meerveld and McDonnell, 2006) or via rapid pipeflow
through soil pipes and other macropores at shallower
depth under (near-)saturated conditions (Jones, 1981;
Chappell, 2010). The relative importance of each of
the mechanisms is mainly controlled by catchment at-
tributes related to geology, soils, topography, climate,
and land cover (e.g., Davis, 1969; Boorman et al., 1995;
Zhang et al., 2001; Kirkby et al., 2002; Price, 2011),
the level of antecedent soil water content (e.g., Meyles
et al., 2003), and rainfall intensity (e.g., Bronstert and
Bárdossy, 2003; Chappell et al., 2012).

Streamflow serves a number of essential purposes, such
as irrigation, recreation, drinking water, industrial uses,
and transport (e.g., Brauman et al., 2007; Quintero
et al., 2009). In addition, it is used as a renewable source
of energy (Cyr et al., 2011), currently accounting for ∼17
% of the global energy production1. Streams further play
a key role in the maintenance and regulation of aquatic
habitats (Poff et al., 1997). However, streamflow also
carries some negative implications for society and en-
vironment. Since the turn of the century floods have
caused each year on average ∼26 billion US dollars in
damage, ∼6000 deaths, and affected ∼110 million peo-

1The World Bank (http://water.worldbank.org/topics/
hydropower)

ple worldwide2, with developing tropical countries gen-
erally the most severely affected (UNISDR, 2011). Fur-
thermore, the transport of pollutants by streams (e.g.,
Jordan et al., 1997; Kirchner et al., 1999; Kolpin et al.,
2004) can adversely affect ecohydrological systems down-
stream, e.g., in the form of eutrophication of estuaries or
lakes with subsequent adverse effects on aquatic biodi-
versity (Anderson et al., 2002).

Changes in climate, caused by increases in atmo-
spheric greenhouse gases, are seriously affecting the
Earth’s hydrological cycle (IPCC, 2007; Bates et al.,
2008). Continued human-caused emission of greenhouse
gases are projected to exacerbate these effects, while con-
tinued population growth will further increase both vul-
nerability to hydrologic disasters and pressure on fresh-
water resources (Huppert and Sparks, 2006; Vörösmarty
et al., 2000). It is thus of great importance to improve
our understanding of streamflow timing and quantity
around the globe under current and future conditions.
Perhaps the greatest obstacle to advancing current un-
derstanding is that much of the land surface is ungauged
or poorly gauged (Fekete and Vörösmarty, 2007), as
demonstrated by Fig. 1.1. Although streamflow estima-
tion in ungauged regions poses a major challenge (Siva-
palan et al., 2003), the increasing availability of multi-
temporal satellite data provides unique opportunities to
rise up to this challenge (Moradkhani, 2008; Van Dijk
and Renzullo, 2011; Miralles et al., 2011). Arguably,
tropical regions require priority attention in that these
have some of the highest population densities and are
thus particularly vulnerable to hydrologic extremes (cf.
Bradshaw et al., 2007), while at the same time being
increasingly poorly gauged in recent decades (cf. Wohl
et al., 2012; Fig. 1.1).

1.1.2 Influence of physiography and cli-
mate on streamflow

There have been numerous studies examining the rela-
tionships between catchment attributes and streamflow
characteristics using observations from meso- (1–10 000
km2) and macro-scale (> 10 000 km2) catchments (see
Li et al. (2013) and Cheng et al. (2012) for recent ex-

2Emergency Events Database (EM-DAT; http://www.emdat.
be).
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Figure 1.1: Global map showing interstation regions in random colors. Interstation regions are defined as the catchment of a gauging
station excluding nested subcatchments of upstream gauges. Ungauged regions are indicated in gray. Ideally, the interstation regions
are small, indicating a high station density. Streamflow and catchment boundary data originate from the Global Runoff Data Centre
(GRDC; Koblenz, Germany; http://grdc.bafg.de), the Model Parameter Estimation Experiment (MOPEX; Schaake et al., 2006), and
the Peel et al. (2000) dataset. The global maps in this thesis are presented in the Robinson projection (80◦S–80◦N and 180◦W–180◦E)
with grid lines at every 15◦ latitude and 30◦ longitude.

amples). Streamflow characteristics often used in such
studies include: mean annual streamflow; runoff coef-
ficient, defined as the ratio of long-term mean stream-
flow to precipitation; baseflow index (BFI), defined as
the ratio of long-term mean baseflow to total streamflow
(Smakhtin, 2001); baseflow recession constant, defined
as the rate of baseflow decay (Tallaksen, 1995); and var-
ious flow percentiles. Olden and Poff (2003) and Monk
et al. (2007) provide a more exhaustive list of streamflow
characteristics.

Climate encompasses the atmospheric water supply
(precipitation) and demand (potential evaporation), and
has long been recognized as the dominant control on the
long-term water balance of catchments (Schreiber, 1904;
Ol’dekop, 1911; Budyko, 1974). The most often used
climate index is the so-called aridity index, defined as
the ratio of long-term precipitation to potential evapo-
ration (UNEP, 1992). The aridity index and the runoff
coefficient are strongly positively related: the higher the
aridity index of a catchment, the higher its runoff coef-
ficient (e.g., Arora, 2002). The relationship between the
aridity index and the runoff coefficient has been formal-
ized in the well-known empirical Budyko (1974) equa-
tion. Subsequent studies have demonstrated that the
runoff coefficient is also related to the phase difference
between precipitation and potential evaporation season-
alities (Milly, 1994; Wolock and McCabe, 1999; Potter
et al., 2005). Climate indices have further been linked
to baseflow recession rates (Tschinkel, 1963; Czikowsky
and Fitzjarrald, 2004; Peña-Arancibia et al., 2010; Van
Dijk, 2010) and BFI (Mazvimavi et al., 2005; Van Dijk,
2010).

Hydrologic properties of soils and geology control the

infiltration, storage, transmission, and release of water
within a catchment, and are thus considered as pri-
mary controls on baseflow (Farvolden, 1963; Davis, 1969;
Tague and Grant, 2004; Price, 2011). Accordingly, many
observation-based studies have found good relationships
between BFI and indices related to soils (Boorman et al.,
1995; Santhi et al., 2008; Ahiablame et al., 2013) or geol-
ogy (Lacey and Grayson, 1998; Longobardi and Villani,
2008; Bloomfield et al., 2009). These studies consistently
indicated that the more permeable the subsurface ma-
terials of a catchment, the higher will be its BFI. Soil
properties have also been found to exert some influence
on the long-term water balance by inducing infiltration-
excess runoff (Potter et al., 2005). In addition, in re-
gions where the precipitation and potential evaporation
seasonalities are strongly out of phase, the soil storage
capacity can influence the long-term water balance by
determining how much water can be stored during wet
periods and subsequently evaporated during dry periods
(Wolock and McCabe, 1999). Although there has been
some progress in terms of the development of global-
scale harmonized datasets of soils (Sanchez et al., 2009;
FAO/IIASA, 2012) and geology (Gleeson et al., 2011;
Hartmann and Moosdorf, 2012), there is still a major
lack of consistent, detailed, hydrologically-relevant in-
formation with respect to soils and geology on a global
scale. However, satellite remote sensing provides an as
yet largely untapped opportunity to improve the spa-
tial interpolation of soil-profile observations (cf. Mulder
et al., 2011). Another important factor to consider is
land degradation, the general term encompassing long-
term reductions in ecosystem function and land produc-
tivity (FAO, 1979). Soil compaction due to heavy ma-
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chinery or cattle trampling is a form of land degradation
with severe hydrological implications (Batey, 2009), in-
cluding reductions in dry-season baseflows and increases
in the frequency and magnitude of stormflows and sed-
imentation (Bruijnzeel, 2004). Bai et al. (2008) have
made an attempt to quantify land degradation world-
wide using remotely sensed vegetation productivity. Al-
though their approach has been heavily criticized (Wes-
sels et al., 2012) it was considered the best global repre-
sentation of surface degradation status in a recent study
addressing the potential impacts of land degradation on
storm runoff across the tropics (Peña-Arancibia, 2013).

Topography controls the hydraulic gradient and thus
further mediates the streamflow response of a catch-
ment, particularly in steep terrain. Based on theoret-
ical considerations one would expect a negative rela-
tionship between mean surface slope and BFI or base-
flow recession rate, as more steeply sloping aquifers are
expected to drain faster (Brutsaert and Nieber, 1977).
However, sensitivity experiments using the widely-used
TOPMODEL (Beven and Kirkby, 1979) have demon-
strated that this relationship is positive (Wolock et al.,
1989), while observation-based studies have found it to
be either negative, non-existent, or positive (Haberlandt
et al., 2001; Mazvimavi et al., 2005; Zecharias and Brut-
saert, 1988; Post and Jakeman, 1996; Brandes et al.,
2005). Another often used topograhic index is the to-
pographic wetness index (TWI) of Beven and Kirkby
(1979). However, the use of TWI to locate contribut-
ing areas within catchments has generally been unsat-
isfactory (e.g., Jordan, 1994; Seibert et al., 1997; But-
tle et al., 2001). On the whole, more work is necessary
to improve our understanding of topography-streamflow
linkages (cf. Price, 2011), and the near-global 90 × 90-
m resolution digital elevation model derived from Shut-
tle Radar Topography Mission (SRTM) data (van Zyl,
2001; http://srtm.csi.cgiar.org/) should prove use-
ful in this regard. However, the fact that surface to-
pography is not necessarily representative of subsurface
flow paths and hydraulic gradients constitutes an impor-
tant confounding factor (e.g., Beven, 1997). Moreover,
topographic indices tend to covary with climate (Peña-
Arancibia et al., 2010) and soil properties (Price, 2011),
thereby rendering it difficult to isolate causal variables.

Last but not least, it is widely recognized that the type
of land use and land cover in a catchment affects stream-
flow totals and regime. Urbanization typically involves
an increase in the impervious area of a catchment, which
promotes overland flow and thus increases the peak flow
frequency and magnitude (Leopold, 1968; Hollis, 1975;
Lee and Heaney, 2003; Jacobson, 2011). Conversely, the
presence of extensive lakes, wetlands, and/or reservoirs
in a catchment tends to promote baseflow, resulting in a
higher BFI (Neff et al., 2005; Ahiablame et al., 2013).
The effects of agriculture on streamflow are typically
mixed, and depend on management practices (notably
irrigation, crop rotation, and degree of soil disturbance
and/or surface degradation; cf. Price, 2011; Bruijnzeel,

2004). The forest-streamflow relationship deserves spe-
cial attention and is discussed in the next section.

1.1.3 The forest-streamflow relationship

The relationship between forest cover and streamflow is a
subject of ongoing and intense discussion (Andréassian,
2004; Bruijnzeel, 2004; FAO, 2005; Bradshaw et al., 2007;
Van Dijk et al., 2009). Until the 1980s, the common per-
ception was that forests act as giant sponges which soak
up water during rainy periods and release it gradually to
the streams during dry periods. Reviews of micro-scale
(< 1 km2) experimental catchments have since revealed
that forests generally reduce amounts of streamflow due
to their higher water consumption and high rainfall in-
terception relative to grassland and agricultural crops
(Bosch and Hewlett, 1982; Bruijnzeel, 1990; Sahin and
Hall, 1996; Zhang et al., 2001; Brown et al., 2005; Jack-
son et al., 2005; Buytaert et al., 2006, 2007). However, at
the scale of interest to water resource managers and plan-
ners (> 100 km2) the relationship is far less clear (e.g.,
Buttle and Metcalfe, 2000; Wilk et al., 2001; Robinson
et al., 2003; Zhou et al., 2010). The reasons for this may
include any (combination of) the following: (1) uncer-
tainties in the land-cover, precipitation, and/or stream-
flow data; (2) additional catchment climate character-
istics overriding the effects of land-cover change; and
(3) covariance between streamflow and catchment at-
tributes (Van Dijk et al., 2012). Recent studies have
also highlighted the important role played by soil sur-
face conditions in mediating the hydrological impacts of
land-cover changes (Bruijnzeel, 2004; Bonell et al., 2010;
Ghimire et al., 2013). Post-forest soil disturbance and
degradation associated with road building, urbanization
and prolonged cropping or overgrazing without remedial
measures, may well override the effects of changes in for-
est cover (and thus vegetation water use) on flows (cf.
Bruijnzeel, 2004; Peña-Arancibia, 2013). In the trop-
ics, forest regrowth on abandoned agricultural uplands
is increasing in areas experiencing outmigration to urban
areas (Wright, 2010) whereas other areas undergo rapid
urbanization (Gupta, 2002). Yet, comparatively little
is known about the hydrological implications of rapidly
growing secondary forests (Bruijnzeel, 2004; Hölscher
et al., 2005) or tropical urbanization (Chin, 2006).

1.1.4 Streamflow estimation in un-
gauged catchments

Several observation-based studies have established
(multi-variate) models relating catchment attributes and
streamflow characteristics (e.g., Mazvimavi et al., 2005;
Brandes et al., 2005; Longobardi and Villani, 2008; Van
Dijk, 2010; Peña-Arancibia et al., 2010; Krakauer and
Temimi, 2011; Ahiablame et al., 2013). These models
provide, in theory, a means to estimate streamflow char-
acteristics in ungauged catchments. However, there are
several reasons as to why the applicability of such mod-
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els outside the region for which they were originally de-
rived can be expected to be limited. First, the major-
ity of models was typically based on a relatively small
number of streamflow gauging stations (< 200), which
can lead to less reliable models. Second, the models fo-
cused mostly on a particular region and used regional
datasets to characterize geology or soils, thereby poten-
tially restricting their larger-scale applicability. Third,
most studies did not evaluate the generalization ability
of the model using an independent set of catchments,
and thus it is difficult to judge the true capability of the
models. Finally, different studies reached conflicting con-
clusions regarding the importance of specific catchment
attributes, notably mean surface slope and percentage
forest cover.

Macro-scale hydrological models (land surface schemes
and global hydrological models) simulate the water and
energy balance of the land surface at macro-scales (>
10 000 km2) and are generally used to assess the hydro-
logical implications of global climate change and human
activities (Wood et al., 1997). They have a physically-
based representation of the chief processes governing
the hydrological cycle with a priori estimated param-
eter values, and are therefore expected to provide rea-
sonably accurate streamflow estimates for ungauged re-
gions. However, several studies have shown that stream-
flow estimates derived with macro-scale models are gen-
erally less accurate than streamflow estimates from hy-
drological models generally applied at the catchment
scale (Duan et al., 2006; Nasonova et al., 2009), mainly
due to a lack of calibration of the macro-scale models
(Beven, 1989; Duan et al., 2001). Indeed, many present-
day macro-scale models are essentially uncalibrated, in-
cluding Noah-MP (Niu et al., 2011), Mac-PDM (Gosling
and Arnell, 2011), the Community Land Model (CLM;
Oleson et al., 2010), and PCRaster Global Water Bal-
ance (PCR-GLOBWB; Bierkens and van Beek, 2009;
Van Beek and Bierkens, 2009). Others have been only
crudely calibrated, such as the Variable Infiltration Ca-
pacity (VIC) model (Liang et al., 1994; Nijssen et al.,
2001) and WASMOD-M (Widén-Nilsson et al., 2007),
which all use nearest-neighbor interpolation of calibrated
model parameters, and WaterGAP (Döll and Fiedler,
2008), which has been calibrated based on the runoff co-
efficients of gauged catchments. On the whole, there ap-
pears to be considerable room for improvement regarding
the calibration of macro-scale hydrological models.

1.1.5 The role of satellite data

Satellite remote sensing offers researchers unparalleled
opportunities to collect global-scale data (Melesse et al.,
2007; Tang et al., 2009) that can be integrated in hy-
drological models to improve their streamflow simula-
tion capability (Van Dijk and Renzullo, 2011; Morad-
khani, 2008). Earth observing satellites differ in terms
of their orbit and the sensors they carry (Kramer, 2002),
with the sensor specifications determining which bio-

physical, climatic, or hydrological variables (and changes
therein over time) can be calculated. In recent decades,
substantial progress has been made with sensor and
product algorithms for estimating such key variables
as: precipitation (Stephens and Kummerow, 2007); sur-
face soil moisture (De Jeu et al., 2008); vegetation
productivity (Bannari et al., 1995); evapotranspiration
(Li et al., 2009); surface topography (van Zyl, 2001);
flood inundation area (Smith, 1997); land-cover type
(Xie et al., 2008; Hansen and Loveland, 2012); sur-
face energy fluxes (Liang, 2010); snow and ice cover
(Dietz et al., 2011); continental-scale groundwater stor-
age (using Gravity Recovery and Climate Experiment
(GRACE) data; Ramillien et al., 2008); lake and river
water level (Hall et al., 2011).

The usefulness of remotely-sensed precipitation for im-
proving streamflow estimates is well recognized. Several
regional studies have shown that using a Tropical Rain-
fall Measuring Mission (TRMM)-based multi-satellite
precipitation product (Huffman et al., 2003) gives com-
parable results to using data from a sparse raingauge
network in terms of streamflow prediction performance
(e.g., Su et al., 2008, 2011; Collischonn et al., 2008; Yong
et al., 2012). However, remotely-sensed precipitation
products tend to be less reliable outside the tropics, in
cold and/or mountainous regions, and at finer spatial
and temporal scales (e.g., Hirpa et al., 2010; Ward et al.,
2011; Peña-Arancibia et al., 2013).

Remotely-sensed surface soil moisture can potentially
be used as an indicator of antecedent catchment wetness
to improve streamflow estimates. Indeed, regional stud-
ies using surface soil-moisture products derived from the
now defunct Advanced Microwave Scanning Radiome-
ter for the Earth observing system (AMSR-E) or from
the Advanced SCATterometer (ASCAT) have reported
promising results (e.g., Crow and Ryu, 2009; Brocca
et al., 2010; Koster et al., 2010; Draper et al., 2011).
Some important challenges to overcome are the shallow
penetration depth of the signal (1–2 cm), the large satel-
lite footprint (∼50 km), and the effects of vegetation, all
of which introduce inaccuracies in the observations (De
Jeu et al., 2008). In addition, AMSR-E suffers from
radio frequency interference, a common problem in the
USA, Europe, the Middle East, and Japan (Njoku et al.,
2005).

The Normalized Difference Vegetation Index (NDVI;
Tucker, 1979) is the most widely used remotely-sensed
vegetation productivity index and its main use has been
to study the vegetation response to climatic variability
(e.g., Gong and Shi, 2003; Piao et al., 2006; Voepel et al.,
2011; Jia et al., 2011). Other uses include estimating leaf
area index (e.g., Wang et al., 2005; Myneni et al., 1997),
estimating biomass and net primary productivity (e.g.,
Box et al., 1989; Ricotta et al., 1999), assessing long-term
vegetation trends (e.g., Pouliot et al., 2009; Anyamba
and Tucker, 2005), drought monitoring (Anyamba and
Tucker, 2012), and mapping land cover and land use
(and changes therein; e.g., Lunetta et al., 2006; Kleyn-
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hans et al., 2011; Lu et al., 2003; Bai et al., 2008). On
the other hand, there has been only a single study us-
ing remotely-sensed NDVI to investigate the vegetation
influence on streamflow (Donohue et al., 2010). NDVI
derived from the Advanced Very High Resolution Ra-
diometer (AVHRR) is particularly interesting in this re-
gard because of its long historical record (dating back
to 1981), although the data are subject to large uncer-
tainties due to a coarse spatial resolution and a lack of
on-board calibration devices (Staylor, 1990).

1.2 Thesis objectives and outline

The general objectives of this thesis are to relate stream-
flow characteristics and catchment physiographic at-
tributes over a wide range of catchment and climatic
conditions, and to determine the value of specific satel-
lite remote-sensing products for use in meso- and macro-
scale hydrological modeling. In order to fulfill these gen-
eral objectives, five specific objectives have been defined,
which are addressed in separate chapters. The specific
objectives are to:

1. Assess the possible improvement in stormflow es-
timates when using soil moisture proxies based on
TRMM precipitation, AMSR-E surface soil mois-
ture, gauged precipitation, and observed baseflow
for 186 Australian catchments (Chapter 2).

2. Globally evaluate four AVHRR-based NDVI
datasets by conducting an intercomparison and
by validating them against high-resolution NDVI
imagery based on the Landsat-5 Thematic Mapper,
which has on-board calibration devices (Chapter
3).

3. Analyze the possible impact of forest regeneration
and urbanization on streamflow characteristics for
a series of catchments on the island of Puerto Rico,
one of the few humid tropical areas for which high
quality data on rainfall, streamflow as well as land-
cover change are available (Chapter 4).

4. Relate selected catchment physiographic attributes
and two important baseflow characteristics (BFI
and baseflow recession rate) using a global stream-
flow dataset consisting of 3520 catchments, and ex-
amine the feasability of producing global maps of
these baseflow characteristics using an artificial neu-
ral network approach (Chapter 5).

5. Examine whether global maps of selected stream-
flow characteristics (mean annual streamflow, BFI,
baseflow recession rate, and two flow percentiles) as
derived using artificial neural networks and a global
streamflow dataset can be used to calibrate a simple
conceptual rainfall-runoff model (Chapter 6).

Finally, a summary of the present findings, chief conclu-
sion reached, and suggestions for possible directions for
future research are presented in Chapter 7.

To achieve these specific objectives, use is made of
large observational datasets which have become avail-

able free of charge thanks to organizations such as
the Global Runoff Data Centre (GRDC; Koblenz, Ger-
many; http://grdc.bafg.de), the U.S. Geological Sur-
vey (USGS; http://waterdata.usgs.gov/nwis), and
the United Nations Food and Agriculture Organization
(FAO; http://data.fao.org/), rather than restricting
oneself to case studies in comparatively small homoge-
neous regions. The aim is to move away from the re-
porting of the idiosyncrasies of single sites or catchments
which has dominated so much of the older hydrologi-
cal literature, and instead attempt to identify robust,
generalizable relationships applicable to different envi-
ronments worldwide (cf. Jones, 2005; Andréassian et al.,
2007; Gupta et al., 2013).
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Chapter 2

Improving Curve Number based storm
runoff estimates using soil moisture
proxies1

Abstract. Advances in data dissemination and the
availability of new remote sensing datasets present both
opportunities and challenges for hydrologists in improv-
ing flood forecasting systems. The current study inves-
tigates the improvement in SCS Curve Number (CN)-
based storm runoff estimates obtained after inclusion
of various soil moisture proxies based on additional
data on precipitation, baseflow, and soil moisture. A
dataset (1980–2007) comprising 186 Australian catch-
ments (ranging from 51 to 1979 km2 in size) was used. In
order to investigate the value of a particular proxy, the
observed S was compared to values obtained with dif-
ferent soil moisture proxies using linear regression. An
antecedent precipitation index (API) based on gauged
precipitation using a decay parameter proved most valu-
able in improving storm runoff estimates, stressing the
importance of high quality precipitation data. An an-
tecedent baseflow index (ABFI) also performed well.
Proxies based on remote sensing (TRMM and AMSR-
E) gave promising results, particularly when consider-
ing the expected arrival of higher accuracy data from
upcoming satellites. The 5-day API performed poorly.
The inclusion of soil moisture proxies resulted in mean
modeled vs. observed correlation coefficients around 0.75
for almost all proxies. The greatest improvement in
runoff estimates was observed in drier catchments with
low Enhanced Vegetation Index (EVI) and topographi-
cal slope (all intercorrelated parameters). The present
results suggest the usefulness of incorporating remotely
sensed proxies for soil moisture and catchment wetness
in flood forecasting systems.

1This chapter is an edited version of: Beck, H. E.; de Jeu, R.
A. M.; Schellekens, J.; Van Dijk, A. I. J. M., and Bruijnzeel, L.
A. Improving curve number based storm runoff estimates using
soil moisture proxies. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 2(4):250–259, 2009.

2.1 Introduction

Floods are among the most costly and frequent nat-
ural disasters in terms of people’s suffering and eco-
nomic losses. In fact, flooding is considered to be one
of the prime catastrophic events threatening society in
many countries (NRC, 1996). Under global environmen-
tal changes as a consequence of land use modifications
and increased greenhouse gas emissions the flooding risk
may increase (Betts et al., 2007). Flood forecasting sys-
tems provide a tool that allows decision makers (and in
some cases the general public) to be proactive rather
than reactive to flood hazard events. Recent develop-
ments in remote sensing and data dissemination present
both opportunities and challenges for hydrologists in im-
proving currently used flood forecasting systems since
remote sensing offers a means to provide frequent global
coverage of such critical hydrological data as precipita-
tion and soil moisture (Entekhabi et al., 1999). The an-
ticipated availability of high-accuracy data at finer spa-
tial and temporal resolutions from ESA’s Soil Moisture
and Ocean Salinity (SMOS) mission in 2009 (Kerr et al.,
2001), NASA’s Soil Moisture Active/Passive (SMAP)
mission in 2012 (NRC, 2007b), and NASA’s Global Pre-
cipitation Measurement (GPM) mission in 2013 (Smith
et al., 2006) presents another incentive to investigate the
application of currently available satellite data.

Most nations have organized and operate special in-
situ networks devoted to measuring river discharge and
precipitation. These networks are increasingly made
available to the public via internet. Examples are the
National Climatic Data Center (NCDC) for precipitation
in the US (see http://www.ncdc.noaa.gov) and the
Queensland Natural Resources and Mines (NR&M) Data
Drill for precipitation in Australia (see http://www.

longpaddock.qld.gov.au/silo/). Also increasingly
available are datasets incorporating multiple networks,
such as the Global Precipitation Climatology Centre
(GPCC) database (Schneider et al., 2008), the Global
Precipitation Climatology Project (GPCP) (Adler et al.,

7



8 CHAPTER 2. IMPROVING RUNOFF ESTIMATES USING SOIL MOISTURE PROXIES

2003), the Global River Discharge Database (GRDD)
(Vörösmarty et al., 1996), and the Global Soil Mois-
ture Data Bank (GSMDB) (Robock et al., 2000). Whilst
many of these datasets have their limitations—including
the use of many different data-formats, low spatial
and/or temporal resolution, or a high cost—improving
their accessibility would present major opportunities for
hydrologists involved in flood forecasting. The Atmo-
spheric Data Access for the Geospatial User Community
(ADAGUC) web portal of the Royal Meteorological In-
stitute of The Netherlands (see http://adaguc.knmi.

nl) has been created specifically to address these issues
and to provide easy access to various datasets in a stan-
dardized and user-friendly format. It hosts a series of
remote sensing products including AMSR-E soil mois-
ture which is used in the current study.

At the base of many flood forecasting exercises lies
the need for a robust model to convert input precipi-
tation to storm runoff from a catchment. The Natu-
ral Resources Conservation Service (NRCS, formerly the
Soil Conservation Service, SCS) Curve Number (CN)
method (USDA, 1986) is widely used to estimate runoff
from rainfall amounts. The attraction of the CN model
lies in its simplicity (it requires the estimation of a sin-
gle parameter only, the Curve Number) and in its nu-
merous applications since the 1980s (Choi et al., 2002;
Arnold and Fohrer, 2005; Kim and Lee, 2008). Be-
cause soil moisture is a key factor determining the par-
titioning of rainfall into runoff and infiltration (Aubert
et al., 2003), soil moisture proxies are calculated to ac-
count for a catchment’s wetness status prior to the rain-
fall event in the hope to improve stormflow prediction
(USDA, 1986). There is some controversy as to the
degree of improvement in storm runoff estimates that
may be obtained when using additional (satellite-based)
information on soil moisture. Some studies that used
only a small number of catchments reported strong im-
provements in runoff estimates after the addition of re-
motely sensed soil moisture data (Jacobs et al., 2003;
Brocca et al., 2008). Others found an improvement only
for a subset of their catchments (Parajka et al., 2005b;
Pauwels et al., 2002). This paper investigates the degree
in improvement in storm runoff prediction obtained with
soil moisture proxies derived from gauged precipitation,
gauged stream discharge, AMSR-E soil moisture, and
TRMM precipitation. Data from a large number (186)
of Australian catchments is used, representing a range of
precipitation, streamflow and soil moisture conditions.
Through analysis of such a large number of catchments
some understanding may be gained as to under what
conditions the additional information on soil moisture
will improve the runoff estimates.

2.2 Data and methods

2.2.1 Catchment selection

A large dataset (1980–2007) of 186 Australian catch-
ments having daily streamflow and precipitation obser-
vations provided by CSIRO Land and Water was used in
the present analysis. The catchments range in size from
51–1979 km2 (mean size 447 km2). Most catchments
are located in the southeastern part of Australia (see
Fig. 2.1a). This region is characterized by a temperate
oceanic climate with a wet winter and low summer rain-
fall, whereas the central part of Australia is arid to semi-
arid; the northern part has dry winters and relatively
wet summers (see http://www.bom.gov.au/climate/).
Most catchments are water-limited (80% of the catch-
ments has ratio of long-term precipitation to potential
evaporation < 1), are dominated by extensive agricul-
ture or native vegetation (mean vegetation cover 35%±
23), and have for the main part low-relief (only 38% of
the catchments has an average slope> 10◦). Catchments
where streamflow was subject to regulation or diversion
were not included in the dataset.

2.2.2 Streamflow and precipitation data

Time series of daily precipitation were based on a grid-
ded dataset (see http://www.bom.gov.au/silo/) with
a spatial resolution of 0.05◦ based on interpolation over
approximately 7200 meteorological stations (see Fig.
2.1b) (Jeffrey et al., 2001). Mean catchment precipi-
tation was calculated from the area-weighted mean pre-
cipitation of the cells covered by the catchment.

Time series of streamflow were collected as part of
previous studies (Guerschman et al., 2008; Peel et al.,
2000). The baseflow component of the discharge is es-
timated using the Eckhardt recursive filter (Eckhardt,
2008), which low-pass filters the hydrograph according
to:

Qbf(t) =
(1− BFImax)αQbf(t− 1) + (1− α)BFImaxQ(t)

1− αBFImax
,

(2.1)

subject to Qbf(t) ≤ Q(t), where Qbf is the baseflow [m3

s−1], Q is the total discharge [m3 s−1], BFImax is the
maximum value of the baseflow index that can be mod-
eled by the algorithm, α is the baseflow recession con-
stant, and t is time [days]. The α parameter is derived
from recession analysis by plotting Q(ti) vs. Q(ti+1) for
discharge values Q(ti) that are part of a recession period
of at least five days, identified by:

Q(ti − 2) > Q(ti − 1) > Q(ti) > Q(ti + 1) > Q(ti + 2).
(2.2)

Assuming that the aquifer is a linear reservoir, theoreti-
cally all points should follow a straight line through the
origin with slope equal to the recession parameter α. In
practice, however, there is some scatter in the points. It
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Figure 2.1: Map of Australia showing (a) the geographical distribution of the 186 catchments in the dataset, and (b) the locations of
the precipitation gauges used on January 5, 2005. The actual gauges used vary from day to day depending on which are available, but
will mostly be similar to this set.

is more probable that the points representing the slower
recession represent the true value of α, because (1) the
discharge at ti could still contain direct runoff, and (2)
there is probably more groundwater recharge at ti. In
reference (Eckhardt, 2008) the points representing the
slowest recession (i.e., the upper limit of the Q(ti) vs.
Q(ti + 1) plot) are on straight line with slope assumed
to be α. However, in the present study the points rep-
resenting the slowest recession often approach one. To
solve this problem common logarithms of both values are
taken and α is determined by fitting a model of the form:

log10 (Q(ti)) = αlog10 (Q(ti + 1)) (2.3)

through the points exceeding the 90th percentile reces-
sion. Since most streams in southern Australia are
ephemeral with porous aquifers, following recommenda-
tions in (Eckhardt, 2008) BFImax was set to 0.5 for all
catchments. By using BFImax = 0.5 Eq. 2.1 corresponds
to the algorithm of Chapman and Maxwell (Chapman
and Maxwell, 1996). Fig. 2.2 gives an example of base-
flow separated using the described methodology for a sin-
gle catchment (gauge code 410061) with α determined at
0.9823. The direct component of discharge (Qqf) is cal-
culated from Q−Qbf.

Streamflow data represent totals based on the 24 hours
prior to midnight local time, whereas the precipitation
data are based on the 24 hours prior to 0900 local time.
This 9 hour mismatch between precipitation and runoff
days might result in a mismatch between P events and
their resulting Qqf in 9/24 = 38% of the events (ignoring
the delayed response of Qqf). To reduce the effect of this
mismatch the temporal resolution of P and Qqf was re-
sampled to 2 days (at 2 day intervals ti the mean of ti−1
and ti was calculated). This resulted in a decrease in the
occurrence of mismatches between P and corresponding
Qqf to 9/48 = 19% of the events. Catchments with less
than 10 events with P > 15 mm after June 2002 (the
launch of AMSR-E) were not included in the analysis.

2.2.3 AMSR-E soil moisture data

In this paper Advanced Microwave Scanning Radiometer
Earth Observing System (AMSR-E)-based surface soil
moisture is used to calculate a soil wetness index (SWI).
AMSR-E Level-2A swaths from June 2002 (the launch of
the AMSR-E mission) to present were used. Soil mois-
ture values were derived using the Land Parameter Re-
trieval Model (LPRM) (Owe et al., 2008) from C-band
(6.92 GHz) passive microwave brightness temperatures.
AMSR-E soil moisture represents the soil moisture in
the top 1–2 cm of the soil. Daily (24 hours prior to mid-
night) mean soil moisture was calculated from the aver-
age of all satellite observations in a swath with footprint
centers inside the catchment boundaries during that day.
The actual number of observations in a swath that were
used thus depended on catchment size. On average,
AMSR-E passes a location in Australia slightly more of-
ten than once per day. Both ascending (daytime, ±13:30
solar time) and descending (nighttime, ±1:30 solar time)
passes of AMSR-E were used. Observations where the
LPRM residual exceeded zero were excluded.

A validation study of the AMSR-E soil moisture prod-
uct used in the present study was performed for Aus-
tralia (Draper et al., 2007). A number of validation sites
were in close proximity to the catchments used in the
present study (although none were in densely vegetated
regions). For these sites the normalized 5-day moving
average of AMSR-E C-band ascending and descending
soil moisture showed strong correlations with in-situ soil
moisture time series at 0–7 cm depth (coefficient of de-
termination r2 = 0.56 to 0.87, RMSE = 0.016 to 0.066
m3 m−3 volumetric soil moisture). In general there was
good spatial agreement with antecedent precipitation.
Radio frequency interference (RFI), a common problem
in many areas in Europe and the US, is almost absent
in Australia (Njoku et al., 2005).
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Figure 2.2: Baseflow separation results for catchment 410061 (gauge code). Baseflow was separated from total streamflow using the
Eckhardt filter.

2.2.4 TRMM precipitation data

The current study uses the Tropical Rainfall Measuring
Mission (TRMM) 3B42RT product, which is available at
a lag of about 6 hours, and is a combination of TRMM
real-time merged passive microwave (HQ, 3B40RT) and
microwave-calibrated infrared (VAR, 3B41RT) (Huff-
man et al., 2003). For each pixel the HQ value is used
if available, and otherwise the VAR value is used. The
spatial resolution is 0.25◦, the domain with useful data is
45◦N–45◦S, and the temporal resolution is 3 hours. Daily
(24 hours prior to midnight local time) time series for
each catchment were calculated from the area-weighted
mean of all cells within the catchment. Compared to the
TRMM 3B42 (research) product, the 3B42RT product
does not include gauged precipitation data.

2.2.5 The Curve Number model

The Curve Number (CN) method is used to predict
the amount of direct runoff resulting from large rainfall
events in a particular area (USDA, 1986). The method
is based on the following relationship:

F

S
=

Qqf

P − Ia
, (2.4)

where F is the actual retention, S the potential maxi-
mum retention, Qqf the direct runoff, P the precipita-
tion, and Ia the initial abstraction of rainfall by soil and
vegetation (all in mm). The following continuity equa-
tion is introduced:

F = P − Ia −Qqf (2.5)

Combining Eqs. 2.4 and 2.5 eliminates F , yielding:

Qqf =
(P − Ia)

2

P − Ia + S
for P > Ia. (2.6)

Ia is related to S according to:

Ia = λS, (2.7)

where λ is the initial abstraction coefficient.
The standard value for λ is 0.2 (Ponce and Hawkins,

1996). However, several more recent studies have shown

that the assumption of 0.2 is unusually high, and that
values between 0.01 and 0.05 are more realistic. A study
using rainfall and runoff data from 307 US catchments
or plots found that a value of λ of 0.05 would fit the data
much better (Woodward et al., 2003). In an experimen-
tal watershed in the Three Gorges Area of China it was
found that λ varied from 0.010 to 0.154 with a median
of 0.048 (Shi et al., 2009). In an experimental catch-
ment in Attica, Greece, the average value of λ was equal
to 0.014, and in a subcatchment equal to 0.037 (Baltas
et al., 2007). In yet another study using data from 237
US catchments optimal model performance was found
with a value of λ in the order of 0.01 (Mishra et al.,
2004). In the present study a fixed value of 0.05 was
used for all catchments.

To directly calculate S for a given rainfall and runoff
amount the following equation may be used (which is a
combination of Eqs. 2.6 and 2.7, rewritten to solve for
S):

S = 0.5λ−2[Qqf − λQqf + 2λP

−
√
Q2

qf − 2λQ2
qf + λ2Q2

qf + 4λPQqf].
(2.8)

Fig. 2.4b gives an example of S values calculated us-
ing Eq. 2.8 (λ = 0.05) from observed rainfall and direct
runoff data shown in Fig. 2.4a.

Because runoff usually varies widely for the same rain-
fall amount (mainly due to antecedent soil moisture con-
ditions, but also due to spatial variability of rainfall, vari-
ability in intensity, measurement errors, and other fac-
tors) the observed S varies between storms. The S also
appears to be biased towards high values at low storm
depths (Hawkins, 1993) because there is not enough
runoff. This effect is more evident at higher values of λ
because there has to be more rainfall for runoff to occur.
To correct this bias a model is fitted with the following
equation (from (Hawkins, 1993), rewritten for S):

Sfit = Sinf − Sinf exp (−vP ), (2.9)

where Sfit is the fitted model and P again the amount
of precipitation [mm]. Sinf (the asymptotic S [mm]) and
v are fitting parameters. The S values with the bias
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Figure 2.3: Flow-chart showing the derivation of S∗ for a single
catchment.

removed are calculated as follows:

S∗ = S − Sfit, (2.10)

where S∗ may be interpreted as an index of mean catch-
ment wetness or saturated area within a catchment. Ig-
noring other factors, a low S∗ value should indicate a
wet catchment with a low infiltration rate and a reduced
potential for storage, whereas a high S∗ value should in-
dicate a drier catchment where a greater portion of the
rainfall infiltrates. Fig. 2.3 summarizes the steps taken
in calculating S∗ values for a catchment.

2.2.6 Soil moisture proxies

Soil moisture proxies are used to estimate the catchment
wetness prior to a rainfall event and adjust Curve Num-
ber estimates of runoff accordingly. This section presents
the five soil moisture proxies used in this paper (SWI,
APIk, APIk TRMM, API5 day, and ABFI). The soil mois-
ture proxies are calculated on a daily basis from June
2002 (the launch of the AMSR-E mission) until 2007
(marking the end of the precipitation and discharge time
series).

Soil Wetness Index (SWI)

An exponential moving average filter (Wagner et al.,
1999) is used to relate AMSR-E based surface soil mois-
ture to the part of the soil that influences runoff pro-
duction. The approach is based on the idea that surface
soil moisture derived from AMSR-E data fluctuates at
a higher frequency (since it pertains to the top few cm
only) than the total runoff-generating part of the soil.
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Figure 2.4: Plots for a single catchment (gauge code 410061) of (a)
observed precipitation vs. observed direct runoff, and (b) observed
precipitation vs. observed S as calculated from observed precipi-
tation and direct runoff using Eq. 2.8. Also shown is the fitted
model (Sfit) and the asymptote of the fit (Sinf). The correlation
coefficient r of the fitted model and the number of observations N
are also listed. Data from 1980–2007 have been used.

The Soil Water Index (SWI [%]) is calculated according
to:

SWI(t) =

∑
i θAMSR-E(ti) exp (− t−tiT )∑

i exp (− t−tiT )
, (2.11)

where θAMSR-E is the AMSR-E-based soil moisture con-
tent [% volumetric content] and T is a time lag constant
[days]. In the present study T was optimized for each
catchment seperately to give the highest linear correla-
tion coefficient r between antecedent SWI and S∗.

Gauge Antecedent Precipitation Index (APIk)

An antecedent precipitation index (API) is often used
because it uses readily available precipitation data
(Mishra et al., 2004). APIk [mm] assumes a temporal
decay constant k to account for soil moisture losses. The
following recursive model was used (Linsley et al., 1949):

APIk(t) = kAPIk(t− 1) + P (t), (2.12)

where P is the gauged precipitation [mm], and k is a de-
cay parameter (< 1) that is inversely related to drainage
and evaporation losses and positively related to penetra-
tion depth [-]. In literature k is reported to vary between
0.80 and 0.98 (Brocca et al., 2008). In the present study
k was optimized separately for each catchment based on
the highest linear correlation coefficient r between an-
tecedent APIk and S∗.
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TRMM Antecedent Precipitation Index
(APIk TRMM)

To investigate the performance of a soil moisture proxy
based on near real-time satellite precipitation an API
is calculated using Eq. 2.12 with TRMM precipitation
estimates for P and k equal to the value optimized using
gauged precipitation data.

5-day Antecedent Precipitation Index (API5 day)

Traditionally the amount of rainfall received in the five
days preceding a storm event of interest is used (Chow
et al., 1988). This 5-day API is calculated according to:

API5 day(t) =

4∑
i=0

P (ti), (2.13)

where i denotes the ith day before day t.

Antecedent Baseflow Index (ABFI)

In literature an exponential relation between baseflow
and groundwater storage has been proposed (Sivapalan
et al., 1987). ABFI [-] is therefore calculated from the
natural logarithm of the baseflow:

ABFI(t) = loge (Qbf(t)), (2.14)

where Qbf is the baseflow [m3 s−1] and t is time [days].
The advantage to this method is that it eliminates the
need to select additional parameters. However, separa-
tion of baseflow from total flow is required. See section
2.2.2 for a description of the separation approach used
here.

2.2.7 Approach

For each catchment, observed values of S∗ (derived
from observed rainfall and direct runoff) for events with
P > 15 mm were compared to antecedent values of the
respective soil moisture proxies. S∗ values for day ti were
compared to values of APIk TRMM, ABFI, and SWI on
day ti − 2 (due to the 2-day resampling of precipita-
tion and direct runoff) and compared to values of APIk
and API5 day on day ti − 3 (due to the 2-day resampling
and the 9 hour mismatch between measurements of rain-
fall and streamflow). For each antecedent soil moisture
proxy (ASMP) a linear regression is performed of the
form:

S∗ = aASMP + b, (2.15)

where a and b are fit parameters. The quality of the
correlation was taken to indicate the value of the soil
moisture proxy for improving runoff estimates. An in-
dependent evaluation of the model was also performed
using the same catchments but setting T equal to 5 and
k equal to 0.971 for all catchments.

The improvement in model performance after includ-
ing a soil moisture proxy in the CN model was assessed

as follows. First, the correlation coefficient of modeled
vs. observed Qqf was calculated for the CN model with-
out the inclusion of the proxy by using Eq. 2.6 with the
S values equal to Sfit. Secondly, to quantify the improve-
ment, the correlation coefficient of modeled vs. observed
Qqf was calculated again but now for the CN model with
the proxy included by using Eq. 2.6 with S calculated
using Eqs. 2.9, 2.10, and 2.15.

2.3 Results and discussion

In the current study for 186 Australian catchments (51–
1979 km2) the performance of five soil moisture proxies
in improving runoff estimates is investigated. Table 2.1
shows for each soil moisture proxy (1) the number of
catchments having a significant correlation (probability
p < 0.01) between antecedent values of the soil moisture
proxy and S∗ (catchment wetness according to observed
precipitation and runoff), (2) the mean correlation co-
efficient r, and (3) the obtained improvement in runoff
estimates.

The APIk soil moisture proxy (with k optimized) per-
formed best, with a significant correlation obtained for
77% of the catchments. The ABFI and SWI (with T
optimized) proxies performed reasonably well, with sig-
nificant correlations in 47% and 35% of the catchments,
respectively. The API5 day and APIk TRMM proxies ex-
hibited poorer performance with significant correlations
in 22% and 23% of the catchments, respectively. The
poor performance of APIk TRMM may be due to the
small size of the catchments, which on average cover
less than a single TRMM cell. Better results can be
expected by using the TRMM 3B42 research product,
which includes gauge data, but these are not available
at near real-time for operational systems. The good per-
formance of APIk stresses the importance of high-quality
precipitation data. All soil moisture proxies resulted in
large improvements in modeled vs. observed runoff after
including the proxy in the model, with correlation coeffi-
cients around 0.75 obtained for almost all proxies. Table
2.1 also lists results for APIk (k = 0.971), APIk TRMM

(k = 0.971), and SWI (T = 5 days), with slightly poorer
results compared to the proxies with optimized param-
eters. Figs. 2.6, 2.7, and 2.8 show detailed results for a
single catchment (gauge code 410061). In this catchment
SWI performed particularly well, demonstrating the high
potential of SWI as an index of overall catchment wet-
ness status. Our results are similar to those of Parajka
et al. (2005b) and Pauwels et al. (2002), who found in-
clusion of remotely sensed soil moisture improved the
model in only a subset of the catchments, but also to
Brocca et al. (2008) and Jacobs et al. (2003) who inves-
tigated a small number of catchments and found large
improvements after the addition of remotely sensed soil
moisture. The performance of the various proxies is not
interchangeable (when for example ABFI performs well
it is likely that APIk also performs well).
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Table 2.1: Summary of the results showing the number of catchments with a significant correlation (probability p < 0.01) between
the soil moisture proxy and S∗ (1), the mean correlation coefficient r between the proxy and S∗ (3), and the improvement in runoff
estimates after including the proxy into the model (4). The standard deviation of r is also given.

Number of

catchments Mean Qqf observed vs. modeled r

Soil moisture proxy with p < 0.01 Mean r Standard SCS-CN SCS-CN with proxy

API5 day 41 (22%) −0.62 (±0.12) 0.68 (±0.26) 0.80 (±0.17)

APIk (k optimized for each catchment) 143 (77%) −0.70 (±0.11) 0.57 (±0.29) 0.75 (±0.18)

APIk (k = 0.971) 110 (59%) −0.68 (±0.11) 0.57 (±0.28) 0.73 (±0.17)

APIk TRMM (k equal to APIk optimized k) 42 (23%) −0.62 (±0.11) 0.69 (±0.23) 0.79 (±0.17)

APIk TRMM (k = 0.971) 37 (20%) −0.60 (±0.11) 0.70 (±0.20) 0.80 (±0.15)

ABFI 88 (47%) −0.69 (±0.12) 0.55 (±0.30) 0.76 (±0.16)

SWI (T optimized for each catchment) 65 (35%) −0.71 (±0.12) 0.47 (±0.30) 0.72 (±0.16)

SWI (T = 5 days) 47 (25%) −0.68 (±0.12) 0.43 (±0.30) 0.67 (±0.16)

The SWI time lag constant T and the APIk decay
parameter k were optimized for each catchment individ-
ually. Fig. 2.5 shows the optimization results for SWI
and APIk. Only the catchments with a significant corre-
lation between S∗ and antecedent values of the proxy are
shown. The value of T resulting in the best correlations
was found to be 5 days, implying that 63% of the SWI
values are based on data less than 5 days old. Higher
values of T were found in some other studies (Brocca
et al., 2008; Wagner et al., 1999). The optimum value of
k was 0.971, implying that 63% of the APIk values are
based on rainfall less than 41 days old. A likely expla-
nation for the difference in lag between SWI and APIk
is that remotely sensed soil moisture already contains
information on past events.

An attempt was made to relate the correlation co-
efficient r of the relationship between antecedent val-
ues of a soil moisture proxy and S∗ with catchment
attributes. We examined catchment size, mean topo-
graphical slope, mean saturated conductivity, dominant
texture class, mean plant available water content, mean
clay content, mean precipitation, mean discharge, mean
potential evaporation (ET), mean actual ET as derived
from MODIS (Guerschman et al., 2008), mean Enhanced
Vegetation Index (EVI) calculated from catchment aver-
age MOD34B4 reflectances, and fractions of woody veg-
etation (from NFI, 1997), non-agricultural land, grazing
land, horticulture, and broad acre cropping. Correla-
tions were found in turn with catchment mean precipi-
tation, discharge, ET, topographical slope, and EVI (see
Figs. 2.9, 2.10, and 2.11). For most soil moisture prox-
ies and catchment parameters the correlations are sig-
nificant at the 0.01 level. A study in Austria (Parajka
et al., 2005b) found a similar relationship between the
standard deviation of the catchment elevation (equiva-
lent to topographical slope) and the correlation coeffi-
cient of the relationship between modeled and remotely
sensed soil moisture. Due to intercorrelation between
the respective parameters it is difficult to identify the
primary mechanism behind these correlations. However,

there are two possible explanations. Wet catchments
(high mean precipitation, discharge, and ET) tend to
have more frequent and more intense rainfall events that
can be expected to exhibit a more straightforward rela-
tionship with runoff amount, leaving little room for im-
provement and thus resulting in lower correlation coeffi-
cients between antecedent values of the proxies and S∗.
Fig. 2.12 demonstrates this by showing better model per-
formance at higher ET in (a), and thus less improvement
after the addition of a proxy into the model in (b). Poor
model performance in drier catchments is also found in
other studies (Parajka et al., 2005b; Lidén and Harlin,
2000; Gan and Biftu, 1996; Chiew et al., 1993). Another
possibility is that the soil moisture in catchments with
high topographical slope and high EVI is generally more
spatially heterogeneous, thereby complicating the esti-
mation of catchment-averaged soil moisture. This leads
to a soil moisture proxy that is less reliable and thus to
poorer performance.

Our results show that large improvements in Curve
Number-based estimates of runoff are possible with the
addition of soil moisture proxies for most catchments.
The improvement is highest in drier catchments with low
EVI and topographical slope. Although the remotely
sensed proxies currently show lower performance, this
could well improve in the near future with the availabil-
ity of high-accuracy data at finer spatial and temporal
resolutions from ESA’s Soil Moisture and Ocean Salinity
(SMOS) mission in 2009 (Kerr et al., 2001), NASA’s Soil
Moisture Active/Passive (SMAP) mission in 2012 (NRC,
2007b), and NASA’s Global Precipitation Measurement
(GPM) mission in 2013 (Smith et al., 2006).

2.4 Conclusions

The following conclusions can be drawn based on the
analysis performed in the current study:

1. In 186 Australian catchments (51–1979 km2) large
improvements in the predictive capability of the
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Figure 2.8: Results for catchment 410061 (gauge code) showing the temporal dynamics of the normalized soil moisture proxies.

C
o
rr

el
a
ti

o
n

co
effi

ci
en

t
r

SWI T [days]

Optimal T = 18 days

(a)

Optimal k = 0.971

(b)

APIk k

0.85 0.9 0.95 10 20 40
-1

-0.8

-0.6

-0.4

-0.2

0

[-]
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Curve Number model are possible by the use of
soil moisture proxies derived from additional data
on precipitation, soil moisture, and baseflow. Al-
most all soil moisture proxies were able to increase
the mean modeled vs. observed runoff correlation to
around 0.75.

2. APIk performed best, stressing the importance of
accurate precipitation data.

3. An optimal value of 5 days was found for the time
lag constant T used in the calculation of SWI, and

an optimal value of 0.971 was found for the decay
parameter k used in the calculation of APIk.

4. In dry catchments with low EVI and topographical
slope the addition of soil moisture proxies results
in large improvements in runoff predictions. Due to
covariances between the parameters distinct conclu-
sions about the mechanism behind the correlations
are speculative.

5. The soil moisture proxies derived from current satel-
lites (SWI and APIk TRMM) show promising results.
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Figure 2.10: The performance of each soil moisture proxy plot-
ted against catchment mean Enhanced Vegetation Index (EVI).
Only the catchments with a significant correlation between the
soil moisture proxy and S∗ are shown.

A
P

I 5
d
a
y

v
s.

o
b
s.

S
∗
r

r = 0.48
p < 0.01

(a)

A
P

I k
v
s.

o
b
s.

S
∗
r

r = 0.34
p < 0.01

(b)

A
P

I k
T
R
M

M
v
s.

o
b
s.

S
∗
r

r = 0.72
p < 0.01

(c)

Mean P [mm d−1]

A
B

F
I

v
s.

o
b
s.

S
∗
r

r = 0.64
p < 0.01

(d)

S
W

I
v
s.

o
b
s.

S
∗
r

r = 0.47
p < 0.01

(e)

2 4 6

2 4 6

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-1

-0.9

-0.8

-0.7

-0.6

-0.5

Mean P [mm d−1]

Figure 2.11: The performance of each soil moisture proxy plotted
against catchment mean precipitation. Only the catchments with
a significant correlation between the soil moisture proxy and S∗

are shown.
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Chapter 3

Global evaluation of four AVHRR-NDVI
datasets: Intercomparison and
assessment against Landsat imagery1

Abstract. Advanced Very High Resolution Radiome-
ter (AVHRR) data with their long-term (1981–current)
global coverage at frequent intervals provide unique op-
portunities to explore vegetation dynamics related to
climate variability, climate change, and land-use driven
changes of land cover. Several AVHRR-derived Normal-
ized Difference Vegetation Index (NDVI) datasets ex-
ist, each based on the AVHRR Global Area Coverage
archive but differing in their processing to correct for
sensor and atmospheric effects. This paper presents a
global comparative analysis for the land surface involv-
ing four AVHRR-derived NDVI datasets: (1) Pathfinder
AVHRR Land (PAL); (2) Global Inventory Modeling
and Mapping Studies (GIMMS); (3) Land Long Term
Data Record (LTDR) version 3 (V3); and (4) Fourier-
Adjustment, Solar zenith angle corrected, Interpolated
Reconstructed (FASIR). Our aims are two-fold: (1) to
assess the level of agreement of the medians, trends, and
variances, as well as the correlation between the four
AVHRR-NDVI datasets from 1982 to 1999; and (2) to
independently assess the performance of each AVHRR-
NDVI dataset, and that of Moderate Resolution Imaging
Spectroradiometer (MODIS) NDVI, using 11 764 Land-
sat samples of 20× 20 km2 located globally covering ev-
ery major land-cover type. For the AVHRR-NDVI in-
tercomparison equal medians, variance, and trends, and
no correlation between all the respective AVHRR-NDVI
datasets were found for 9.9 %, 45.5 %, 48.1 % and 61.6
% of the total land surface, respectively (p ≥ 0.05). For
the four AVHRR-NDVI datasets we found: (1) consis-
tent trends for the tundra and particularly Australia;
(2) inconsistent trends for Europe, Africa, and the Sa-
hel; and (3) moderately consistent trends for the rest of
the terrestrial land surface including North America and
China. The PAL and LTDR V3 datasets lack calibra-

1This chapter is an edited version of: Beck, H. E.; McVicar,
T. R.; van Dijk, A. I. J. M.; Schellekens, J.; de Jeu, R. A. M.,
and Bruijnzeel, L. A. Global evaluation of four AVHRR-NDVI
datasets: Intercomparison and assessment against Landsat im-
agery. Remote Sensing of Environment, 115(10):2547–2563, 2011.

tion, as evidenced by the presence of apparent trends in
desert areas. In the Landsat-NDVI vs. AVHRR-NDVI
comparison of absolute values the LTDR V3 dataset per-
formed best, whereas in the comparison of temporal-
change values the GIMMS dataset performed best. In
both analyses MODIS-NDVI performed better than any
AVHRR-NDVI dataset. The simple average of the four
AVHRR-NDVI datasets produced better results than ei-
ther AVHRR-NDVI dataset alone, indicating that the
errors between the datasets are at least partially un-
related. This research emphasizes the implications of
AVHRR-NDVI dataset choice for studies assessing the
vegetation response to climate change and modelling of
the terrestrial carbon balance.

3.1 Introduction

Amongst the different spectral vegetation indices derived
from remotely sensed imagery the Normalized Difference
Vegetation Index (NDVI; Tucker, 1979) has been the
most widely used. NDVI is calculated as follows:

NDVI =
ρnir − ρr

ρnir + ρr
, (3.1)

where ρr and ρnir are the spectral reflectance in the red
and near-infrared channels, respectively. NDVI has been
found to be related to biophysical variables such as Leaf
Area Index (LAI; e.g., Wang et al., 2005), fraction of
photosynthetically active radiation (fPAR; e.g., Gallo
et al., 1985; Goward et al., 1985), foliage projective cover
(e.g., Lu et al., 2003), biomass (e.g., Hunt, 1994), and
productivity (e.g., Myneni and Williams, 1994; Myneni
et al., 1997; Schloss et al., 1999). NDVI has also been
widely and successfully used to study vegetation-climate
interactions (e.g., McVicar and Jupp, 1998; Ichii et al.,
2002; Donohue et al., 2009), for detecting long-term veg-
etation trends (e.g., Tucker et al., 2001; Eklundh and
Olsson, 2003), to model the global carbon balance (e.g.,
Potter, 1999; Fang et al., 2003), and to assess vegeta-
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tion functional characteristics (e.g., Berry and Roderick,
2002; DeFries et al., 2000; Lu et al., 2003).

Long-term time series are required to detect vegeta-
tion trends. This renders data collected by the NOAA
series of Advanced Very High Resolution Radiometer
(AVHRR) sensors (in operation since 1981) important
for numerous environmental applications (NRC, 2007a).
However, AVHRR lacks reliable onboard calibration de-
vices (Staylor, 1990), suffers from satellite orbital drift
(Price, 1991), and has a limited set of relatively broad
(compared to modern-day sensors) spectral bands which
reduces the accuracy of atmospheric corrections (Tanré
et al., 1992). These effects potentially result in un-
reliable trends (Gutman, 1999). Several global NDVI
datasets have been produced to capitalize on the ex-
tended temporal coverage, each starting with very simi-
lar AVHRR Global Area Coverage (GAC; Kidwell, 1998)
data, but differing in their processing streams to re-
duce sensor, illumination, and atmospheric effects. The
four most widely used AVHRR-NDVI datasets are: (1)
Pathfinder AVHRR Land (PAL; James and Kalluri,
1994); (2) Global Inventory Modeling and Mapping
Studies (GIMMS; Tucker et al., 2005); (3) Land Long
Term Data Record (LTDR; Pedelty et al., 2007); and (4)
Fourier-Adjustment, Solar zenith angle corrected, Inter-
polated Reconstructed (FASIR; Los et al., 2000).

Despite some general agreement, global and regional
analyses have highlighted important differences, both
in terms of absolute AVHRR-NDVI values and trends
derived from AVHRR-NDVI series (Table 3.1). Here
we extend previous studies by: (1) assessing all four
AVHRR-NDVI datasets globally; and (2) performing
both absolute-value and temporal-change assessments
of the AVHRR-NDVI datasets using Landsat to assess
which dataset is the most suited for specific applications.
Previously only three datasets have been compared glob-
ally (McCloy et al., 2005), whereas a comparison of all
four datasets has only been made for the Iberian Penin-
sula (Alcaraz-Segura et al., 2010b).

Several studies have compared AVHRR-NDVI im-
agery to NDVI as derived from sensors with better cali-
bration, including Landsat (e.g., Buheaosier et al., 2003;
Tucker et al., 2005; Hall et al., 2006; Brown et al., 2006;
Tarnavsky et al., 2008; Pouliot et al., 2009; Stellmes
et al., 2010), SPOT-VGT (e.g., Tucker et al., 2005;
Brown et al., 2006; Fensholt et al., 2006; Tarnavsky et al.,
2008; Fensholt et al., 2009; Song et al., 2010), and Mod-
erate Resolution Imaging Spectroradiometer (MODIS;
e.g., Huete et al., 2002; Buheaosier et al., 2003; Fen-
sholt, 2004; Venturini et al., 2004; Tucker et al., 2005;
Gallo et al., 2005; Kawamura et al., 2005; Bédard et al.,
2006; Brown et al., 2006; Tarnavsky et al., 2008; Ji et al.,
2008; Fensholt et al., 2009). However, most of these
studies were regional in design, only covered a limited
number of land-cover types, and only two such studies
were conducted with the aim of comparing alternative
AVHRR-NDVI datasets (Fensholt et al., 2006; Hall et al.,
2006). Additionally, studies using Landsat imagery gen-

erally use a small number of Landsat acquisitions (i.e., 1,
8, 3, 21, 1, 10, and 10 Landsat acquisitions for the respec-
tive Landsat studies cited at the start of this paragraph).

The present analysis consists of two parts. First, we
determine the degree of internal consistency in terms of
median, variance, and trend, as well as the degree of cor-
relation between the different AVHRR-NDVI datasets
(PAL, GIMMS, LTDR, and FASIR) for the global land
surface. This type of analysis provides insight into the
differences of results that may arise when using one
dataset over another. Our study is the first to use LTDR
version 3 (V3), which is expected to bring consider-
able improvement over previous AVHRR-NDVI datasets
(Nagol et al., 2009), including LTDR version 2.

In the second part, we independently assess the perfor-
mance of the four AVHRR-NDVI datasets (plus MODIS-
NDVI) using NDVI values derived from 11 764 Landsat
samples of 20×20 km2 (Potapov et al., 2011) made avail-
able by the Food and Agricultural Organization (FAO),
located globally covering every major land-cover type.
There are numerous instances where two Landsat sam-
ples (i.e., a pair) were acquired for the same location,
allowing both spatial and temporal validation of the
AVHRR-NDVI and MODIS-NDVI datasets. Cloud-free
Landsat imagery is suitable to validate AVHRR-NDVI
because it represents high-resolution (30 m) instanta-
neous acquisitions that are less affected by sub-pixel
cloud contamination, spatial compositing, and mixed
pixels (Hall et al., 2006). Additionally, Landsat does
not suffer as much from sensor degradation due to its on-
board calibration (achieving an accuracy of ±5 %; Chan-
der and Markham, 2003). We aim to use MODIS-NDVI
data, with its advanced atmospheric correction (Huete
et al., 1999; Vermote et al., 2002) to assess the relative
performance of the AVHRR-NDVI datasets. The paper
is structured around these two parts in Methods (sec-
tion 3.3), Results (section 3.4), and Discussion (section
3.5), with the Conclusion presented in section 3.6. The
datasets used are described in section 3.2.

3.2 Datasets

3.2.1 AVHRR-NDVI

We use four long-term AVHRR-NDVI datasets: (1) PAL
(James and Kalluri, 1994); (2) GIMMS (Tucker et al.,
2005); (3) LTDR V3 (Pedelty et al., 2007); and (4)
FASIR (Los et al., 2000). Table 3.2 provides a detailed
description of each dataset. Maximum-value compos-
ites of LTDR V3 data at 10-day intervals were calcu-
lated, matching the compositing interval of the PAL and
FASIR datasets. For all datasets annual means were
calculated at 0.5◦ resolution for the analysis described
in section 3.3.1, and monthly means were calculated at
their original spatial resolution for the analysis described
in section 3.3.2. To restrict the analysis to ‘growing sea-
son’ months, and to avoid large solar zenith angles and
influences from snow/ice in winter at the high northern
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latitudes, pixels with < 0◦ surface air temperature based
on a monthly climatology for 1982–1999 were excluded
from the annual mean calculation. Average air temper-
ature from the CRU TS 3.0 dataset were used (monthly
temporal and 0.5◦ spatial resolution; downloaded from
http://badc.nerc.ac.uk/browse/badc/cru in Febru-
ary 2011; Mitchell and Jones, 2005).

3.2.2 Landsat-NDVI

Landsat data (Potapov et al., 2011) made available by
the FAO were used for the analysis described in sec-
tion 3.3.2 to assess the performance of the respective
AVHRR-NDVI datasets. The FAO has been report-
ing on the state of forest resources every 5 to 10 years
from 1946 to 2010 through their Forest Resource As-
sessments (FRA). In order to obtain systematic infor-
mation on forest cover change, a global Remote Sens-
ing Survey (RSS) is being undertaken for FRA 2010
(Ridder, 2007). The image data for the RSS were pro-
vided by the USGS Global Land Survey dataset (Gut-
man et al., 2008), which consists of a global collection
of ortho-rectified cloud-free Landsat image acquisitions
around the years 1975, 1990, 2000, and 2005. To re-
duce computational time the RSS uses a sampling grid
consisting of 13 689 sites at each integer terrestrial de-
gree latitude and longitude intersection between 0 and
60◦N/S and every second degree intersection between
60◦ and 75◦N/S (Potapov et al., 2011). The RSS con-
sists of 56 218 Landsat-4, -5, and -7 samples that are cen-
tered at the intersection points, each covering an area of
20×20 km2, with often two images being acquired for the
same sample location. We only use the 19 978 Landsat-
5 images. The data were downloaded from http:

//globalmonitoring.sdstate.edu/projects/fao/ in
January 2011.

Landsat raw digital numbers were converted to ra-
diance [W m−2 sr−1 µm−1] and subsequently top-of-
atmosphere (TOA) reflectance [unitless] using equations
from Chander et al. (2009). Depending on the values
listed in the header files supplied with the Landsat sam-
ples, two approaches were used for the conversion to
radiance. The first approach used minimum and maxi-
mum radiance parameters, whereas the second used gain
and bias parameters. Samples that used gain and bias
parameters that had units of radiance listed as “UN-
KNOWN” in the header file were discarded from the
analysis, as these samples gave suspect results.

NDVI was calculated according to Eq. 3.1 using Land-
sat bands 3 and 4 TOA reflectance for the ρr and ρnir

terms, respectively. Prior to the calculation of NDVI the
Landsat data were averaged to match the spatial reso-
lution of the AVHRR-NDVI or MODIS-NDVI dataset
that was subject of the comparison. Pixels flagged as
cloud (using the thermal infrared band) or water were
masked, and samples with > 50 % missing values were
excluded from our analysis, resulting in a total of 11 764
Landsat samples at 8012 unique sites. The group of sam-
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Figure 3.1: Histogram showing the number of Landsat samples
used in each year. Also shown are the launch dates of MODIS
Terra and the NOAA satellites.

Table 3.3: For each land-cover class the number (N) of Landsat
samples and the number of sample pairs of the same location with
different acquisition dates are shown. For samples with a mix of
classes the most dominant class was used.

Pre-2000 (N) Post-2000 (N)

Land-cover class Samples Pairs Samples Pairs

All classes 6794 1424 4970 849

Evergreen needleleaf forest 863 282 602 107

Evergreen broadleaf forest 458 39 356 19

Deciduous needleleaf forest 145 41 327 78

Deciduous broadleaf forest 273 62 233 50

Mixed forest 526 154 372 71

Woodland 529 96 549 91

Wooded grassland 324 25 164 9

Closed shrubland 237 43 189 28

Open shrubland 673 93 222 21

Grassland 808 187 586 109

Cropland 1054 295 720 139

Bare ground 725 47 49 4

Mosses and lichens 179 60 601 123

ples acquired pre-2000 and post-2000 are used to validate
AVHRR-NDVI and MODIS-NDVI, respectively. Fig. 3.1
shows the temporal distribution of the samples, Fig. 3.2
shows the geographical locations, and Table 3.3 lists the
distribution amongst the different land-cover classes. It
is noted that the Landsat data were not corrected for
atmospheric influences, Bidirectional Reflectance Distri-
bution Function (BRDF) effects, or topographical shad-
owing. The Landsat data are referred to hereafter as the
“Landsat samples”.

Of the pre-2000 Landsat samples 10.4 % was acquired
after June 3 1991, marking the beginning of the Mount
Pinatubo volcanic eruption that resulted in a substan-
tial increase in stratospheric aerosol loading. Most of the
Landsat samples were acquired in the local summer (i.e.,
56.1 % of the samples > 23.5◦N/S were acquired in June,
July, or August in the northern hemisphere or December,
January, or February in the southern hemisphere; 80.1
% of all samples are located > 23.5◦N/S). The median
difference in acquisition time between Landsat samples
having the same location (i.e., Landsat sample pairs) is
1.16 y and 0.76 y for the pre-2000 and post-2000 samples,
respectively. The median seasonal difference in acquisi-
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Figure 3.2: The 8012 unique Landsat sampling locations used in the present study.

tion time (i.e., the absolute difference in acquisition day
number of the year) between Landsat samples having
the same location (i.e., Landsat sample pairs) is 36 and
25 days for the pre-2000 and post-2000 samples, respec-
tively.

3.2.3 MODIS-NDVI

MODIS is a newer generation instrument onboard the
Terra satellite (launched December 18, 1999) and the
Aqua satellite (launched May 4, 2002). MODIS-NDVI
data are used in the analysis described in section 3.3.2
to assess the relative performance of the AVHRR-NDVI
datasets. Comparisons between the AVHRR-NDVI
datasets and MODIS-NDVI were not performed due
to lack of temporal overlap of all four AVHRR-NDVI
datasets (cf. Table 3.2). The 0.05◦ monthly MODIS
Collection-5 MOD13C2 product (Huete et al., 1999)
was acquired from the NASA Earth Observing Sys-
tem data gateway (http://eospso.gsfc.nasa.gov/) in
May 2010.

3.2.4 Land-cover classification map

The present study uses the University of Maryland
(UMD) Global Land Cover (GLC) classification map
(Hansen et al., 2000), which distinguishes fourteen land-
cover classes (Fig. 3.3). The UMD GLC classification
map is based on AVHRR data acquired between 1981
and 1994 (Hansen et al., 2000).

3.3 Methods

3.3.1 Intercomparison of AVHRR-NDVI
datasets

Several analyses were performed globally over the com-
mon temporal extent of 1982–1999 and the common ge-
ographical extent of 62.85◦S–70◦N (Table 3.2) to as-
sess the consistency amongst the four AVHRR-NDVI

datasets (PAL, GIMMS, LTDR V3, and FASIR). Al-
though many metrics exist to describe the phenology of
vegetation growth using NDVI (e.g., Reed et al., 1994),
the present study focuses on annual mean NDVI as it is
the most commonly used metric in long-term vegetation
studies. In the calculation of the annual means pixels
with < 0◦ surface air temperature based on a monthly
climatology for 1982–1999 were excluded from the anal-
ysis (cf. section 3.2.1). Prior to the analysis, data were
downsampled by averaging at 0.5◦ resolution to expedite
the computations. To assess the consistency between the
AVHRR-NDVI datasets three sets of analyses were per-
formed:

1. For each dataset and each 0.5◦ pixel the median,
variance, and trend were calculated from time series
comprised of 18 z-score transformed annual mean
values (one value for each year from 1982 to 1999).
The resulting maps of median, variance, and trend
were subsequently averaged for each 0.5◦ latitude
band and each land-cover class. To remove potential
biases between the datasets, prior to the analysis the
data were z-score transformed by:

z =
x− µ
σ

, (3.2)

where z is the z-score of the pixel, x is the NDVI
value of the pixel, and µ and σ are the tempo-
ral mean and temporal standard deviation of the
dataset, respectively. For each dataset µ and σ
were calculated from the monthly pixels that have
non-missing values for all four datasets. It is noted
that the z-score transformation does not change the
skewness or kurtosis of the data, or the sign of trends
calculated from time series.

2. For each dataset and each 0.5◦ pixel the median,
variance, and trend were calculated from time se-
ries comprised of 18 annual mean values (one value
for each year from 1982 to 1999). The spatial corre-
lation (indicated by the coefficient of determination,
R2) between all pairs of the datasets was calculated
for the median, variance, and trend, resulting in a
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Figure 3.3: Map of the UMD GLC classification.

correlation matrix of six unique R2 values per statis-
tic. Due to spatial autocorrelation in the data con-
ventional tests of the probability, indicated by the
p-value, will yield incorrect results. We therefore
used a modified t-test (Clifford et al., 1989) that
reduces the degrees of freedom to obtain corrected
probability levels.

3. For each 0.5◦ pixel the agreement between the
datasets in terms of median, variance, and trend,
and the degree of correlation, was assessed from four
groups comprised of 18 z-score transformed (using
Eq. 3.2) annual mean values (one value for each year
from 1982 to 1999 for all four datasets). The follow-
ing statistical tests were performed on a per-pixel
basis to test four relevant hypotheses (resulting in
four p-value maps, one for each statistical test):

(a) The Kruskal-Wallis test (Kruskal and Wallis,
1952) was used for calculating a p-value to test
the null hypothesis that the medians of the
datasets are equivalent.

(b) Levene’s test (Levene, 1960) was used to obtain
a p-value to test the null hypothesis of equal
variances.

(c) The Kruskal-Wallis test (Kruskal and Wallis,
1952) was used again to test the null hypothesis
that the trends of the datasets are equal. For
each dataset from all pairs of the time series
comprised of 18 annual mean values ‘trends’
were calculated, resulting in 153 ‘trends’ per
dataset. The Kruskal-Wallis test was subse-
quently used to calculate a p-value to asses the
equality in medians between the four groups of

153 ‘trends’.
(d) The null hypothesis that there is no correlation

between the datasets (Helsel and Hirsch, 2002,
section 8.2) was assessed by computing a mean
p-value for the correlation matrix between all
pairs of datasets.

For all analyses a significance level of 0.05 was used,
i.e., if one of the analyses yields a p-value < 0.05, the
null hypothesis is rejected. Pixels identified as water in
the original datasets were ignored, and if a 0.5◦ pixel had
> 50 % of the original dataset’s pixels identified as water
in one of the four AVHRR-NDVI datasets, the 0.5◦ pixel
was excluded from analysis.

3.3.2 Assessment against Landsat-NDVI

Two kinds of analyses were performed to evaluate
the accuracy of the AVHRR-NDVI and MODIS-NDVI
datasets. The first compares AVHRR-NDVI and
MODIS-NDVI with Landsat-NDVI in terms of absolute
values. The second compares the difference according
to a Landsat sample-pair (i.e., two 20× 20 km2 Landsat
samples acquired for the same location at different dates)
with the difference according to the AVHRR-NDVI and
MODIS-NDVI datasets. In both comparisons the mean
NDVI of the Landsat sample is calculated and for the
AVHRR-NDVI and MODIS-NDVI datasets the mean
NDVI of the pixels covered by the 20 × 20 km2 sample
is calculated. To account for differences in the tempo-
ral resolution, monthly means of the AVHRR data were
calculated prior to the analysis (at each dataset’s origi-
nal spatial resolution) and the monthly image nearest to
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the Landsat sample acquisition date was selected. Only
Landsat samples were used for which all four AVHRR-
NDVI datasets have non-missing values (i.e., the same
samples were used for all four AVHRR-NDVI datasets).

The present study uses the Root Mean Square Dif-
ference (RMSD) statistic to quantify the accuracy of the
AVHRR-NDVI and MODIS-NDVI datasets. The RMSD
is calculated over all data and for each land-cover class
separately. In order to remove systematic differences be-
tween the AVHRR-NDVI or MODIS-NDVI datasets and
Landsat-NDVI that may inflate the RMSD, the AVHRR-
NDVI and MODIS-NDVI data are linearly rescaled to
Landsat-NDVI in the calculation of the RMSD. The re-
gression model:

ŷi = β̂0 + β̂1xi (3.3)

is used, where ŷ are the rescaled AVHRR-NDVI or
MODIS-NDVI values, x are the observed AVHRR-NDVI
or MODIS-NDVI values, and i denotes the ith observa-
tion pair. The model parameters β̂0 and β̂1 are estimated
using the least-squares method by minimizing the resid-
ual:

ei = yi − ŷi, (3.4)

where e are the residuals and y are the observed Landsat-
NDVI values. The Landsat-NDVI values are plot-
ted on the ordinate (or y-) axis and the AVHRR-
NDVI or MODIS-NDVI values on the abscissa (or x-)

axis, thereby avoiding erroneous estimates of β̂0 and β̂1

(Piñeiro et al., 2008). The RMSD is calculated as:

RMSD =

√√√√ 1

N

N∑
i=1

e2
i , (3.5)

where N is the number of observation pairs, and the
summation is over i = 1, 2, . . . , N . The units of RMSD
are Landsat-NDVI. The bias, reflecting the systematic
difference between AVHRR-NDVI or MODIS-NDVI and
Landsat-NDVI, is calculated by:

Bias =
1

N

N∑
i=1

(xi − yi). (3.6)

The units of the bias are Landsat-NDVI. Finally, the
coefficient of determination (R2) is calculated by:

R2 = 1−

N∑
i=1

e2
i

N∑
i=1

(yi − ȳ)2

. (3.7)

To assess whether a dataset performs significantly better
than another, we use the t-test to calculate probabilities
for assessing the null hypothesis of equal means between
the absolute residuals (|e|; Eq. 3.4) obtained by each
dataset.

A final analysis involves calculating the average of the
four AVHRR-NDVI datasets in an effort to produce a
better AVHRR-NDVI dataset. The fitted parameters β̂0

and β̂1 (i.e., the intersect and slope, respectively) are
applied to the each AVHRR-NDVI dataset and mean
AVHRR-NDVI values are calculated. The result is again
regressed against Landsat-NDVI, and the RMSD is cal-
culated. This analysis provides insight into the rela-
tionship between the errors of the four AVHRR-NDVI
datasets, because if the errors are at least partially in-
dependent, averaging should result in a more reliable
AVHRR-NDVI dataset that obtains a lower RMSD in
the comparison with Landsat-NDVI.

3.4 Results

3.4.1 Intercomparison of AVHRR-NDVI
datasets

Fig. 3.4 shows the 1982–1999 trend as calculated from
the annual mean NDVI for the PAL, GIMMS, LTDR
V3, and FASIR datasets. Consistent amongst the dif-
ferent datasets is the increasing mean global trend, but
regionally large discrepancies are apparent. The PAL
and LTDR V3 datasets show positive trends over sev-
eral assumed radiometrically stable sites (e.g., the “bare
ground” class in Fig. 3.3, most notably the Sahara).

Fig. 3.5 shows for the four AVHRR-NDVI datasets
for 1982–1999 the median, variance, and trend calcu-
lated from annual mean time series of z-score trans-
formed NDVI, averaged for each 0.5◦ latitude band
and each land-cover class. Figs. 3.5a and b also show
Landsat-NDVI values, which were converted to z-scores
using Eq. 3.2 and the mean of the coefficients used
for the AVHRR-NDVI z-score transformation (Table
3.4). Fig. 3.5a shows similar median values between
the AVHRR-NDVI datasets, although north of 60◦N the
GIMMS dataset appears positively biased compared to
the other datasets, which is reflected in the “mosses and
lichens” class (corresponding to the tundra) in Fig. 3.5b.
The Landsat-NDVI values confirm that the GIMMS
dataset overestimates NDVI in this region. Landsat-
NDVI values are consistently higher than AVHRR-NDVI
values, which is likely due to the Landsat data consist-
ing primarily of summer acquisitions (i.e., 56.1 % of the
Landsat samples > 23.5◦N/S were acquired in the lo-
cal summer), whereas the AVHRR-NDVI data are an-
nual means. In terms of variance (Fig. 3.5c) the LTDR
V3 dataset has exceptionally high values from 40◦S to
30◦S, and over the whole latitudinal range the PAL and
LTDR V3 datasets have consistently higher values than
the GIMMS and FASIR datasets. Similarly, in Fig. 3.5e
over most of the latitudinal range the PAL and LTDR
V3 datasets show higher trends than the GIMMS and
FASIR datasets. However, at latitudes south of 45◦S
the GIMMS dataset has higher trends (Fig. 3.5e) due
to strong trends found in southern Chile (cf. Fig. 3.4b).
Furthermore, an increase in trends is observed for the
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Table 3.4: Means (µ) and standard devia-
tions (σ) [NDVI units] which served for z-score
transformation of the AVHRR-NDVI datasets
(Eq. 3.2). Only pixels that have non-missing
values for all four datasets were used in the cal-
culation.

PAL GIMMS LTDR V3 FASIR

µ 0.34 0.41 0.37 0.39

σ 0.20 0.22 0.17 0.22

Table 3.5: Coefficient of determination (R2) of the spatial
correlation of median, variance, and trend of annual mean
NDVI time series between the AVHRR-NDVI datasets.
All correlations were significant (p < 0.05; probabilities
were corrected for autocorrelation).

PAL GIMMS LTDR V3

Median GIMMS 0.92

LTDR V3 0.96 0.89

FASIR 0.96 0.90 0.94

Variance GIMMS 0.34

LTDR V3 0.47 0.21

FASIR 0.47 0.25 0.28

Trend GIMMS 0.34

LTDR V3 0.80 0.36

FASIR 0.73 0.38 0.69

GIMMS dataset north of 67◦N, which is also reflected in
the “mosses and lichens” class (corresponding to the tun-
dra) in Fig. 3.5f. Other than the latter no obvious biases
are seen in the individual land-cover classes (Fig. 3.5f).

Table 3.5 shows R2 values of the correlation between
spatial maps of median, variance, and trend values for all
pairs between the PAL, GIMMS, LTDR V3, and FASIR
datasets, calculated from annual means of 1982 to 1999.
All correlations were significant at the 0.05 level (signifi-
cance levels were corrected for autocorrelation). In terms
of median values the correlation pairs with the GIMMS
dataset had the lowest R2 values, possibly due to the
aforementioned higher values of the GIMMS dataset ob-
served north of 60◦N. Similarly, in terms of variance and
trends the correlation pairs with the GIMMS dataset
show the lowest R2 values.

Fig. 3.6 shows the results of the per-pixel assessment
for the four z-score transformed PAL, GIMMS, LTDR
V3, and FASIR datasets from 1982–1999 time series of
the null hypotheses of equal medians, equal variance,
equal trends, and no correlation. This type of anal-
ysis identifies specific regions where the four datasets
show agreement/disagreement. Equal medians, equal
variance, equal trends, and no correlation were found
in 9.9 %, 45.5 %, 48.1 %, and 38.4 % of the land surface,
respectively, using a significance level of 0.05 (Table 3.6).
Most of the agreement in terms of median and trend is
found in open-canopy land-cover types (grass/shrubs),

whereas for the agreement in terms of variance, and the
correlation level, no such relationship is found. However,
the agreement in the “evergreen broadleaf forest” class
(corresponding to the tropical forests), is notably lower
for all statistics.

The same analysis is performed again for the same
period for the two datasets that had negligable trends
in deserts and thus seemed most stable: GIMMS
and FASIR. Whilst the spatial patterns of agree-
ment/disagreement are similar to the analysis involv-
ing all four AVHRR-NDVI datasets (cf. Fig. 3.6), equal
medians, equal variance, equal trends, and no correla-
tion were found in 23.7 %, 81.9 %, 76.2 %, and 32.2 %
of the land surface, respectively, again using a signifi-
cance level of 0.05 (Table 3.6). Thus, there is consider-
able improvement in the agreement in terms of median,
variance, trend, and in the correlation, when only using
the GIMMS and FASIR datasets compared to the anal-
ysis involving all four datasets, but the agreement in the
“evergreen broadleaf forest” class (corresponding to the
tropical forests) is still markedly lower compared to the
other land-cover types.

Table 3.7 shows trends in annual mean NDVI time
series for 1982 to 1999 for selected regions. Exceptional
trend agreement was found for Australia, whereas good
agreement for Asia and the tundra, and poor agreement
for Europe, Africa, and the Sahel; cf. Fig. 3.6c. Moderate
trend agreement was obtained for the remaining regions
(Table 3.7). AVHRR-NDVI trends for all regions and all
datasets, except the FASIR dataset in the Libyan desert,
are positive.

3.4.2 Assessment against Landsat-NDVI

Fig. 3.7 presents scatter plots of the absolute-values com-
parison of NDVI from AVHRR and MODIS vs. NDVI
from Landsat. The R2 and RMSD statistics for the
scatter plots of the four AVHRR-NDVI datasets against
the Landsat-NDVI data ranged between 0.87–0.90 and
0.066–0.076, respectively (Fig. 3.7a–d). The same statis-
tics for the MODIS-NDVI vs. Landsat-NDVI comparison
were 0.90 (R2) and 0.057 (RMSD); see Fig. 3.7e. Fig. 3.8
shows scatter plots of the comparison of changes in NDVI
based on AVHRR-NDVI and MODIS-NDVI vs. Landsat-
NDVI. The R2 and RMSD statistics for the scatter plots
of the four AVHRR-NDVI datasets against the Landsat-
NDVI change data ranged between 0.55–0.61 and 0.077–
0.083, respectively (Fig. 3.8a–d). The same statistics for
the MODIS-NDVI vs. Landsat-NDVI change compari-
son were 0.62 (R2) and 0.073 (RMSD); see Fig. 3.8e.
Table 3.8 lists RMSD values of the linear least-squares
regression for the entire dataset and for each separate
land-cover type. Weighted-mean RMSD values (based
on the number of samples in each land-cover class to re-
move potential bias in the data), are also calculated for
each dataset. Based on the weighted-mean RMSD in the
absolute comparison the LTDR V3 dataset is the best
performing AVHRR-NDVI dataset (RMSD of 0.066; Ta-
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Table 3.6: For each land-cover class the percentage of pixels with p ≥ 0.05 (i.e., failure to reject the null hypothesis) for the null
hypothesis of equal median (eq. median), equal variance (eq. var.), equal trend (eq. trend), and no correlation (no corr.), between all
four datasets (PAL, GIMMS, LTDR V3, and FASIR) from 1982 to 1999 and the two most ‘stable’ datasets (GIMMS and FASIR),
again from 1982 to 1999. Data were z-score transformed prior to the analysis. For pixels with a mix of classes the most dominant
class was used. To improve interpretability, values higher than 50 % are shown in bold typeset.

PAL, GIMMS, LTDR V3, and FASIR [%] GIMMS and FASIR [%]

Land-cover class Eq. median Eq. var. Eq. trend No corr. Eq. median Eq. var. Eq. trend No corr.

All classes 9.9 45.5 48.1 38.4 23.7 81.9 76.2 32.2

Evergreen needleleaf forest 17.2 33.6 41.4 29.8 35.4 83.5 80.3 41.9

Evergreen broadleaf forest 2.1 17.4 41.4 81.2 12.0 55.3 69.3 82.6

Deciduous needleleaf forest 21.2 76.7 54.5 26.5 27.6 81.0 72.6 33.6

Deciduous broadleaf forest 18.8 39.2 39.9 43.5 31.8 89.5 73.2 50.3

Mixed forest 30.0 30.7 30.8 29.9 44.7 90.3 75.4 40.2

Woodland 8.2 44.7 53.1 49.1 19.7 83.8 70.7 50.1

Wooded grassland 11.1 44.1 46.4 38.9 22.3 81.9 61.0 33.6

Closed shrubland 9.2 68.5 79.7 27.1 24.7 93.0 88.0 6.7

Open shrubland 7.0 67.5 67.7 28.5 27.8 93.2 87.5 8.2

Grassland 11.1 67.3 62.9 15.1 25.1 91.1 84.0 12.7

Cropland 11.9 37.2 33.6 31.5 28.7 80.6 63.4 33.3

Bare ground 0.8 24.0 15.8 71.9 15.2 71.5 82.3 11.0

Mosses and lichens 1.5 67.6 72.2 11.1 8.8 82.6 83.1 11.6

Table 3.7: For selected regions the annual trend from 1982 to 1999 in annual
mean NDVI and the percentage of pixels with equal trends (eq. trend; i.e.,
p ≥ 0.05 for the null hypothesis of equal trends) between all four AVHRR-
NDVI datasets (PAL, GIMMS, LTDR V3, and FASIR). To improve inter-
pretability, values higher than 50 % are shown in bold typeset.

Trend [10−3 NDVI units yr−1]

Region PAL GIMMS LTDR V3 FASIR Eq. trend [%]

Globe 2.36 1.06 1.80 1.37 48.1

North America 2.53 1.04 2.10 1.44 47.2

South America 1.80 1.08 1.26 0.54 52.8

Europe 4.27 1.91 2.98 2.54 30.5

Asia 2.37 1.23 1.73 1.55 56.8

China 1.70 0.73 1.44 1.17 51.5

Africa 1.71 0.40 1.58 0.95 27.2

Australia 1.34 0.56 0.78 0.94 87.4

Sahela 2.02 1.23 2.05 1.68 26.9

Hot spots of defor.b 1.92 0.66 1.22 0.47 48.7

Libyan desertc 0.29 0.02 0.53 −0.01 0.0

Tundrad (Eurasia) 2.40 1.71 1.42 1.69 79.4

Tundrad (N-Ae) 1.71 1.73 1.47 2.15 62.6

Boreal for.f (Eurasia) 3.69 1.60 2.51 2.10 48.6

Boreal for.f (N-Ae) 2.46 0.50 1.63 0.90 48.6

a Delineated using the World Wildlife Fund (WWF) terrestrial ecore-
gions map (downloaded from http://www.worldwildlife.org/science/

ecoregions/item1267.html; Olson et al., 2001) by selection of the “Sa-
helian Acacia savanna” region.

b Tropical hot spots of deforestation (defor.) according to Achard et al.
(2002).

c The south-eastern part of the Libyan desert (21◦N–23◦N and 28◦E–29◦E;
Rao et al., 1993).

d Delineated using the WWF terrestrial ecoregions map by selection of all
regions having “tundra” in the name.

e North America.
f All forest (for.) classes (from “evergreen needleleaf forest” to “mixed

forest”; see Fig. 3.3) within the boreal biome, which was delineated
using the WWF terrestrial ecoregions map (more details at http://

globalmonitoring.sdstate.edu/projects/gfm/boreal/data.html).



30 CHAPTER 3. GLOBAL EVALUATION OF FOUR AVHRR-NDVI DATASETS
M

ed
ia

n

(a) (b)

V
a
ri

a
n
ce

(1
0
−
1
)

(c) (d)

T
re

n
d

(1
0
−
3
) (e)

Latitude [◦]

PAL

GIMMS

LTDR V3

FASIR

Landsat

(f)

E
v
erg

reen
n
eed

lelea
f
fo

rest

E
v
erg

reen
b
ro

a
d
lea

f
fo

rest

D
ecid

u
o
u
s

n
eed

lelea
f
fo

rest

D
ecid

u
o
u
s

b
ro

a
d
lea

f
fo

rest

M
ix

ed
fo

rest

W
o
o
d
la

n
d

W
o
o
d
ed

g
ra

ssla
n
d

C
lo

sed
sh

ru
b
la

n
d

O
p
en

sh
ru

b
la

n
d

G
ra

ssla
n
d

C
ro

p
la

n
d

B
a
re

g
ro

u
n
d

M
o
sses

a
n
d

lich
en

s

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80
-10

0

10

20

30

0

0.25

0.5

0.75

1

-1.5

-0.5

0.5

1.5

Figure 3.5: Median (a–b), variance (c–d), and trend (e–f) of annual mean NDVI time series for the PAL, GIMMS, LTDR V3, and
FASIR datasets for 1982 to 1999, with (a), (c), and (e) showing means for each 0.5◦ latitude band and (b), (d), and (f) means for each
land-cover class. For (a), (c), and (e) only 0.5◦ latitude bands that have data for more than 10 pixels were shown. The NDVI data
have been z-score transformed prior to the analysis, and the values are therefore unitless. To revert the values back to NDVI units
Eq. 3.2 and the coefficients listed in Table 3.4 can be used. The Landsat-NDVI values in (a–b) were converted to z-scores using the
mean of the coefficients used for the AVHRR-NDVI z-score transformation (Table 3.4). In (a) Landsat-NDVI values were only plotted
if the number of samples per 0.5◦ latitude band exceeded 50 % of the number of terrestrial integer longitudinal degrees, whereas in (b)
Landsat-NDVI values were plotted if there were more than 400 Landsat samples in the land-cover class. Landsat samples pre-2000 as
well as post-2000 were used. For pixels with a mix of classes the most dominant class was used.

ble 3.8) and FASIR worst (RMSD of 0.075; Table 3.8),
whereas in the change comparison GIMMS performs best
(RMSD of 0.076; Table 3.8) and FASIR worst (RMSD
of 0.083; Table 3.8). All datasets appear to perform
worse for closed-canopy land-cover types (i.e., from “ev-
ergreen needleleaf forest” to “woodland” in Table 3.8).
In both the absolute and change comparisons for both
instances of “all classes” and for almost every individ-
ual land-cover class MODIS-NDVI performs better than
the four AVHRR-NDVI datasets (Table 3.8), confirming
the robustness of the calibration of the Landsat-NDVI
samples.

The question arises as to whether the relatively small
differences between RMSD values represent statistically
significant differences. To answer this question Table
3.9 lists p-values for the null hypothesis of equal means
of the absolute residuals (|e|; Eq. 3.4) obtained in the
comparisons between NDVI from AVHRR or MODIS
vs. NDVI from Landsat. Using a significance level of
0.05, in the absolute-values comparison of NDVI from
AVHRR or MODIS vs. NDVI from Landsat the GIMMS
and FASIR datasets did not perform significantly differ-
ent (p ≥ 0.05; Table 3.9), whereas all the other combi-
nations did differ significantly. In the change compari-
son the GIMMS dataset performed significantly better
than only the FASIR dataset (p < 0.05; Table 3.9). The

MODIS dataset performed significantly better than all
datasets, except the GIMMS dataset in the change com-
parison (p ≥ 0.05; Table 3.9).

The slope and intersect values of the regression equa-
tions shown in Fig. 3.7a–d and 3.8a–d were applied
and mean AVHRR-NDVI values were calculated (not
shown). An RMSD of 0.062 (N = 6794) was obtained
for the regression comparing absolute values, which is
an improvement in performance of 6 % compared to the
RMSD of 0.066 obtained by LTDR V3, the best perform-
ing individual AVHRR-NDVI dataset (cf. Table 3.8). In
the change comparison an RMSD of 0.073 (N = 1424)
was obtained, which is a 5 % improvement in perfor-
mance compared to the RMSD of 0.077 obtained by
GIMMS, the best performing AVHRR-NDVI dataset in
this respect (cf. Table 3.8). However, in both cases there
was no significant difference (at the 0.05 level) between
the means of the absolute residuals (|e|; Eq. 3.4) of the
best performing AVHRR-NDVI dataset and the ‘simple
average’ AVHRR-NDVI dataset.
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Table 3.8: RMSD statistics of the linear regression of mean NDVI derived from Landsat vs. the respective AVHRR-NDVI datasets
and the MODIS-NDVI dataset, and RMSD statistics of the linear regression of the difference in mean NDVI as derived from Landsat
vs. the respective AVHRR-NDVI datasets and the MODIS-NDVI dataset. The AVHRR-NDVI datasets were compared to the pre-
2000 Landsat-NDVI samples, whereas the MODIS-NDVI dataset was compared to the post-2000 Landsat-NDVI samples; the
number of samples in the Landsat-NDVI dataset pre-2000 and post-2000 are described in Table 3.3. To improve interpretability,
RMSD values lower than 0.070 are shown in bold typeset. Units are Landsat-NDVI. The smaller the number the better the
performance.

RMSD of absolute-values comparison RMSD of change comparison

Land-cover class PAL GIMMS LTDR V3 FASIR MODIS PAL GIMMS LTDR V3 FASIR MODIS

All classes (weighted-mean)a 0.069 0.074 0.066 0.075 0.055 0.080 0.076 0.078 0.083 0.071

All classes (reg. with all data)b 0.070 0.076 0.066 0.075 0.057 0.080 0.077 0.079 0.083 0.073

Evergreen needleleaf forest 0.071 0.068 0.068 0.079 0.058 0.086 0.071 0.083 0.094 0.072

Evergreen broadleaf forest 0.072 0.073 0.065 0.065 0.048 0.099 0.098 0.093 0.111 0.081

Deciduous needleleaf forest 0.075 0.084 0.069 0.084 0.068 0.088 0.074 0.086 0.083 0.080

Deciduous broadleaf forest 0.081 0.085 0.076 0.089 0.063 0.079 0.073 0.083 0.089 0.077

Mixed forest 0.070 0.070 0.066 0.076 0.057 0.083 0.079 0.081 0.084 0.070

Woodland 0.073 0.082 0.074 0.077 0.047 0.097 0.090 0.089 0.095 0.067

Wooded grassland 0.060 0.075 0.052 0.064 0.039 0.075 0.049 0.063 0.061 0.034

Closed shrubland 0.067 0.065 0.061 0.074 0.045 0.055 0.073 0.057 0.056 0.035

Open shrubland 0.041 0.040 0.040 0.044 0.028 0.037 0.043 0.042 0.040 0.024

Grassland 0.067 0.072 0.066 0.078 0.045 0.072 0.080 0.070 0.072 0.055

Cropland 0.071 0.076 0.069 0.081 0.057 0.076 0.076 0.073 0.079 0.076

Bare ground 0.020 0.019 0.020 0.024 0.062 0.030 0.030 0.027 0.029 0.071

Mosses and lichens 0.100 0.105 0.095 0.121 0.066 0.101 0.100 0.105 0.109 0.081

a Weighted-mean RMSD over all land-cover classes. Weighting is based on the number of observations in each regression.
b RMSD from regression using data from all land-cover classes (Figs. 3.7 and 3.8 show the corresponding scatter plots).

Table 3.9: The t-test was used to calculate p-values (probabilities) for the null hypothesis of
equal means between absolute residuals (|e|; Eq. 3.4) of the datasets, for the absolute-values
and temporal-change comparison. This table can be used to assess whether a dataset performs
significantly (p < 0.05) better or worse than another. The smaller the p-value the greater the
likelihood that the datasets perform differently.

p-values for absolute-values comparison p-values for change comparison

PAL GIMMS LTDR V3 FASIR PAL GIMMS LTDR V3 FASIR

GIMMS < 0.001 0.095

LTDR V3 < 0.001 < 0.001 0.533 0.292

FASIR 0.014 0.381 < 0.001 0.352 0.010 0.121

MODIS < 0.001 < 0.001 < 0.001 < 0.001 0.008 0.227 0.033 < 0.001

3.5 Discussion

3.5.1 Intercomparison of AVHRR-NDVI
datasets

Previous comparative research of AVHRR-NDVI
datasets was primarily conducted at a regional scale
using only a subset of the available datasets (Table 3.1).
Accordingly, only a brief discussion of relevant studies is
presented here. Our results are in accordance with those
obtained in similar research for the Iberian Peninsula
for 1982 to 1999 (Alcaraz-Segura et al., 2010b). Using
an 8-km pixel size and a significance level of 0.05,
Alcaraz-Segura et al. (2010b) found a similar trend for
each of the four datasets over 43 % of their study area
while distinguishing positive, negative, and no trend.
The present study applied some additional statistical

rigor to the trend agreement analysis but used data
averaged to 0.5◦ spatial resolution; our results show
consistent trends for 19 % of the Iberian Peninsula
(p ≥ 0.05; Fig. 3.6c). Alcaraz-Segura et al. (2010b) also
reported trends derived from the GIMMS dataset to
be the least similar to those obtained using the other
AVHRR-NDVI datasets. This conforms with Table 3.5,
which has the lowest R2 values for correlation pairs
with the GIMMS dataset, and a visual interpretation
of Fig. 3.4, showing a distinctly different pattern for
the GIMMS dataset. McCloy et al. (2005) analyzed
the intra-annual correlation between the PAL, GIMMS,
and FASIR datasets for 1982 to 1999, and found dis-
agreement in the high northern latitudes (> 60◦N). In
contrast, the inter-annual correlation analysis amongst
the four AVHRR-NDVI datasets presented here ob-
tained mostly significant (p < 0.05) correlations for
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Figure 3.7: Scatter plots of mean NDVI derived from Landsat
imagery vs. the (a) PAL, (b) GIMMS, (c) LTDR V3, (d) FASIR,
and (e) MODIS datasets. Also shown are the linear regression
equations and the best-fit line. The RMSD and bias have the
units of the ordinate (or y-) axis.

this region. Since our analysis focuses on the variation
between years, rather than within years, our results are
affected by sensor degradation and orbital drift and
may therefore be more suitable for studies involving
long-term vegetation dynamics.

Hall et al. (2006) analyzed the difference in terms of
absolute NDVI values between the GIMMS and FASIR
datasets for the globe, and found large differences, with
higher values found for the GIMMS dataset north of
∼ 50◦N, whereas the FASIR dataset had higher values
in the tropical and boreal forests. Our results, based on
z-score transformed data (Table 3.4), confirm their find-
ings as we obtained different median values (p < 0.05)
for most of the global land surface (Fig. 3.6a), consid-
erably higher z-scores for the GIMMS dataset north of
60◦N (Fig. 3.5a), and slightly higher z-scores for the
FASIR dataset in the “evergreen broadleaf forest” and
“evergreen needleleaf forest” classes (tropical and bo-
real forests, respectively); see Fig. 3.5b. The GIMMS
dataset showed similar or higher z-scores in the other
classes (Fig. 3.5b). The higher z-scores of the GIMMS
dataset north of 60◦N are likely due to the matching of
GIMMS to SPOT-VGT data (Hall et al., 2006; Tucker
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Figure 3.8: Scatter plots of the difference in mean NDVI between
imagery acquired at different moments in time of Landsat vs. the
(a) PAL, (b) GIMMS, (c) LTDR V3, (d) FASIR, and (e) MODIS
datasets. Also shown are the linear regression equations and the
best-fit line. The RMSD and bias have the units of the ordinate
(or y-) axis.

et al., 2005). The higher z-scores found by the FASIR
dataset in tropical forests are likely due to the selection
of maximum NDVI in a 3×3 pixels moving window, and
in boreal forests due to the replacement of values below
the median October value (Hall et al., 2006; Table 3.2).

Slayback et al. (2003) compared the PAL, GIMMS,
and FASIR datasets for the northern hemisphere for
1982–1998 and found: (1) the FASIR dataset to be less
noisy in the temporal domain; and (2) increases in all
three datasets for each globally averaged 10◦ latitude
band investigated between 5◦N–75◦N. The present re-
sults agree with (1) and show FASIR to be less noisy, al-
though in the spatial domain, than the PAL and GIMMS
datasets, and similar to the LTDR V3 dataset (Fig. 3.4).
Our analysis takes (2) a step further, as we show trends
in z-scores for entire terrestrial latitudinal extent in
Fig. 3.5e, and that positive trends are found in all four
AVHRR-NDVI datasets north of 14◦S.

Table 3.6 shows slightly poorer agreement between z-
scores of the four AVHRR-NDVI datasets in terms of
trends in dense-canopy cover types. The lesser agree-
ment in the trends is likely attributable to BRDF vari-
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ability, which is more pronounced in forests (Bicheron
and Leroy, 2000), and to the non-linearity and satu-
ration of NDVI in higher biomass ecosystems such as
forests (Huete et al., 1997). The BRDF effect is exac-
erbated in boreal forests where large solar zenith angles
occur frequently (Goward et al., 1991). In the tropics
the agreement and the correlation is considerably worse
(Brown et al., 2006), possibly due to water-vapor effects
and contamination by clouds (Moulin et al., 1997), and
differences in gap-filling and interpolation techniques be-
tween the datasets (cf. Table 3.2). It should be noted
that NDVI is linearly related to fPAR (e.g., Sellers, 1985;
Lu et al., 2003), and if one is interested in deriving LAI
from remote sensing the simple ratio (defined as ρnir

ρr
)

may be more suitable (Lu et al., 2003). It is further
noted that lack of correlation is desirable in deserts and
tropical forests if none show changes over time (Slayback
et al., 2003).

Trend estimates from previous studies (mostly sin-
gle dataset, based either on a Local Area Coverage
(LAC) AVHRR-NDVI dataset or on the PAL or GIMMS
datasets) generally agree with our results, although here
we quantify the uncertainty in the regional trends based
on the per-pixel agreement of trends between the four
differently processed AVHRR-NDVI datasets, thereby
allowing previous studies to be put into context. Dif-
ferences could arise from restriction of this analysis to
‘growing season’ months by rejection of pixels with < 0◦

air temperature based on a monthly climatology. Ta-
ble 3.7 presents trend estimates for 1982 to 1999 for the
four AVHRR-NDVI datasets for selected regions. For
most regions the trends derived from the GIMMS and
FASIR datasets are the least pronounced and those from
the PAL and LTDR V3 datasets the strongest (not-
ing that the PAL and LTDR V3 datasets also show
positive trends in desert sites considered to be radio-
metrically stable; cf. Fig. 3.4). For the entire globe
(e.g., Tateishi and Ebata, 2004; Xiao and Moody, 2005)
the mean increase in NDVI ranges from 1.06 × 10−3

to 2.36 × 10−3 NDVI units yr−1 (Table 3.7). Highly
consistent trends between the respective AVHRR-NDVI
datasets were found for Australia (Donohue et al., 2009),
mostly consistent trends were found for Asia (e.g., Jeong
et al., 2009; Park and Sohn, 2010; De Beurs and Hene-
bry, 2004), the tundra, and the boreal forests, whereas
less agreement was obtained for Europe (e.g., Stöckli and
Vidale, 2004; Julien et al., 2006), Africa, and the Sa-
hel (e.g., Eklundh and Olsson, 2003; Herrmann et al.,
2005); see Table 3.7 and Fig. 3.6c. The lower agree-
ment found in Africa and the Sahel is due to the large
surface area occupied by deserts and sparse vegetation in
which the PAL and LTDR V3 datasets have slightly pos-
itive trends (cf. Fig. 3.4). In North America (e.g., Hicke
et al., 2002; Reed, 2006) moderate agreement between
datasets is seen, as is also the case for South America
(e.g., Paruelo et al., 2004; Sobrino et al., 2006). For all
datasets the strongest greening trends are found for Eu-
rope (ranging from 1.91 × 10−3 to 4.27 × 10−3 NDVI

units yr−1; Table 3.7). The trends for almost all regions
and all datasets are positive (Table 3.7), indicating in-
creasing global vegetative cover. This suggests that the
three primary climatic constraints on vegetation growth
(temperature, radiation, and water availability; Nemani
et al., 2003) have changed to create more favourable con-
ditions for vegetation growth from 1982 to 1999, both
globally and regionally. Additionally, for both agricul-
tural and forest plantations their improved management,
breeding, increasing levels of nutrient application, and
expansion may also be contributing factors to positive
NDVI trends in these areas.

The North American boreal forests exhibits less green-
ing than the North American tundra, as evidenced by
the most ‘stable’ datasets (GIMMS and FASIR; cf. Ta-
ble 3.7). This conforms with previous studies, based
on the GIMMS dataset (Goetz et al., 2005; Verbyla,
2008; Beck et al., 2011) and on a 1-km LAC dataset
(Jia et al., 2003), that reported strong positive trends in
the North American tundra. However, the studies based
on the GIMMS dataset indicated negative trends for the
North American boreal forests (Goetz et al., 2005; Ver-
byla, 2008; Beck et al., 2011), whereas our results show
a weak positive trend of 0.50 × 10−3 NDVI units yr−1

for the GIMMS dataset (Table 3.7; albeit interior bo-
real forest areas in North America do exhibit negative
trends, see Fig. 3.4b). It should be noted that for the
GIMMS dataset (which is the AVHRR-NDVI dataset
that best captures changes in the Landsat-NDVI sam-
ples; cf. section 3.5.2) the difference in trends found be-
tween the North American tundra and boreal forests is
greater compared to the other AVHRR-NDVI datasets,
as also observed in Fig. 3.5e where the GIMMS dataset
showed relatively higher trends north of 67◦N. Contrary
to North America, based on the GIMMS and FASIR
datasets, the Eurasian tundra and boreal forests appear
to be greening at similar rates (cf. Table 3.7).

It is interesting to note that the ‘hot spots’ of tropical
deforestation (Achard et al., 2002; Table 3.7) show an
increase in NDVI for all four datasets. Possible reasons
for this include: (1) rapid regrowth (Lugo and Scatena,
1995; Steininger, 1996) that quickly returns the NDVI
to pre-clearing values; and (2) the spatial maximum-
value compositing used by the datasets (Table 3.2) which
favourably selects intact patches of forest corresponding
with high NDVI values (Alcaraz-Segura et al., 2010a;
Stow et al., 2007). To optimally detect deforestation hot
spots, instead of looking at trends alone, image differ-
encing techniques (e.g., Ingram and Dawson, 2005) us-
ing AVHRR-NDVI data have been implemented to iden-
tify such hot spots. Clearly, when using AVHRR-NDVI
datasets to identify changes from full forest cover to con-
verted or regenerating vegetation types (i.e., as opposed
to a total clear-cut) considerable caution needs to be ap-
plied.

The positive trends in NDVI derived from the PAL
and LTDR V3 datasets for the Libyan desert (Table
3.7), which is considered to be radiometrically stable
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Figure 3.9: Mean NDVI time series for the south-eastern part of
the Libyan desert (21◦N–23◦N and 28◦E–29◦E; Rao et al., 1993).
The temporal resolution of the plotted PAL, GIMMS, LTDR V3,
and FASIR time series are 10 days, 15 days, 10 days, and 10 days,
respectively. The original LTDR V3 data were provided at a daily
time step and were maximum-value composited to 10 days for the
present study. To improve interpretability, the FASIR data were
offset by +0.13 NDVI units. Also shown are the NOAA launch
dates, which do not necessarily correspond with the sensor tran-
sitions of each AVHRR-NDVI dataset as listed in Table 3.2. The
abscissa marks January 1st of each year.

(e.g., Staylor, 1990; Kaufman and Holben, 1993; Rao
et al., 1993), indicates problems with the radiometric
calibration of these datasets. Closer inspection of LTDR
V3 10-day maximum-value time series for the Libyan
desert (Fig. 3.9) revealed two causes: (1) at the begin-
ning of the sensor switches from NOAA-9 to -11 (per
Nov./1988) and from NOAA-11 to -14 (per Jan./1995)
NDVI is under- and over-estimated, respectively; and
(2) the presence of a positive trend (significant at the
0.05 level even when excluding the years 1988, 1989, and
1995, corresponding to the years affected by the afore-
mentioned errors after the sensor switches). A second
problem with the LTDR V3 dataset are the exception-
ally high variance in annual means observed from 40◦S
to 30◦S (Fig. 3.5c). Since the LTDR dataset is currently
under development such problems may be solved during
future releases. Problems with the calibration of PAL
have been reported previously (e.g., De Beurs and Hene-
bry, 2004).

Lastly, although the focus of this paper is on trends,
we emphasize that trends almost never fully encompass
all the variation in time series. Although our results
show trends amongst the AVHRR-NDVI datasets to be
significantly similar (at the 0.05 level) over more than
half of the global land surface, this does not imply that
they are the same in an absolute sense. Further, our
definition of “similar” depends on the significance level
chosen (0.05 in the present study). Our analysis advises
on regions where one should be cautious about using a
particular AVHRR-NDVI dataset. Clearly, the large re-
gional differences obtained between the AVHRR-NDVI
datasets (Fig. 3.6 and Table 3.7) highlight the impor-
tance of dataset choice for modelling the carbon balance
of the terrestrial biosphere, as previously reported by
Hall et al. (2006), and for studying the vegetation re-
sponse to climate change.

3.5.2 Assessment against Landsat-NDVI

The availability of the FAO RSS database of Landsat
imagery has enabled the first comprehensive global vali-
dation of AVHRR-NDVI datasets using an independent
data source of 11 764 samples covering all terrestrial
globally important land-cover types. The Landsat im-
agery is ideal for this evaluation as it is nearly devoid
of temporal and spatial biases, due to the onboard cali-
bration. The robustness of the calibration procedure is
confirmed by the low RMSD values obtained in the com-
parison between MODIS-NDVI and Landsat-NDVI (Ta-
ble 3.8) which lends confidence to the results obtained
in the Landsat validation of AVHRR-NDVI. However,
there is a discrepancy in the results, in that GIMMS
has the second highest of the weighted-RMSD across all
classes (0.074; Table 3.8) for the absolute-values com-
parison between the four AVHRR-NDVI datasets, and
yet GIMMS also has the lowest weighted-RMSD across
all classes (0.076; Table 3.8) for the change compari-
son when compared to the other three AVHRR-NDVI
datasets. A possible explanation is that the GIMMS
dataset contains spatial biases in terms of absolute val-
ues, but not in terms of temporal variance. Such biases
in absolute values, that are not accounted for by the
land-cover classification map used in the present study,
have also been reported in Brown et al. (2006). The
non-linear rescaling and offset of the GIMMS dataset
to SPOT-VGT in the processing (Tucker et al., 2005)
might be responsible, although details on the proce-
dure have not been reported. Nevertheless, for stud-
ies using absolute AVHRR-NDVI values the LTDR V3
dataset is recommended, whereas for studies involving
change, or trend analysis, the GIMMS dataset is recom-
mended. However, since the strength of the AVHRR-
NDVI datasets lies in their long temporal span, the ul-
timate test of performance for the datasets lies in the
temporal-change analysis. Table 3.9. It should be noted
that future releases of the LTDR V3 dataset might per-
form substantially better, as issues with the sensor cal-
ibration have been identified in Version 3 (cf. section
3.5.1). The higher RMSD values obtained using the
FASIR dataset (Table 3.8) might be due to the lower spa-
tial resolution (cf. Table 3.2). The poorer performance
exhibited in closed-canopy land-covers (cf. Table 3.8) is
likely due to the non-linearity and saturation effect of
NDVI in higher biomass ecosystems such as forests (Sell-
ers, 1985), exacerbated by excessive cloud contamination
and water-vapor absorption in tropical forests (Moulin
et al., 1997), large solar zenith angles in boreal forests
(Goward et al., 1991), and differences in gap-filling and
interpolation techniques between the datasets (cf. Table
3.2 and section 3.5.1).

A caveat of this analysis is the extrapolation of each
dataset’s performance in assessing temporal-change (i.e.,
the difference in NDVI between two dates) to the per-
formance in assessing trends (i.e., the tendency of NDVI
based on a time series at regular intervals). This extrap-
olation is probably justified since the analysis is based
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on a large number of observations (i.e., 1424 and 849 ob-
servations for the AVHRR-NDVI datasets and MODIS-
NDVI, respectively; Fig. 3.8), and because most Land-
sat samples were acquired in summer (i.e., 56.1 % of the
Landsat samples > 23.5◦N/S were acquired in the local
summer), thereby limiting the influence of seasonality
on the results. However, most of the Landsat samples
only cover the NOAA-9 and -11 operational years, with
results thus mainly dependent on the processing of these
sensors.

Sensor and atmospheric effects are known to affect the
reflectance signal reaching the satellite (e.g., Cracknell,
1997). The AVHRR-NDVI datasets (and the GIMMS
dataset in particular) rely on maximum-value composit-
ing to minimize the atmospheric effects (Holben, 1986).
Due to the use of a similar length of the maximum-
value compositing period in the datasets (15 days in the
GIMMS dataset and 10 days in the other three AVHRR-
NDVI datasets) the present study focuses on the qual-
ity of other aspects in the processing chain. Previous
studies have summarized the potential influences of the
atmospheric and sensor effects on the computed NDVI
(Table 3.10). Total potential atmospheric errors for each
AVHRR-NDVI dataset were calculated using the listed
potential errors, assuming that applying a correction for
a particular effect means there is no residual error due
to that effect, amounting to 0.32, 0.41, 0.00, and 0.12
NDVI units for the PAL, GIMMS, LTDR V3, and FASIR
datasets, respectively (ignoring the sign of the potential
errors). The LTDR V3 dataset thus has the lowest to-
tal potential atmospheric induced error and the GIMMS
dataset the highest. This is consistent with the absolute-
values comparison of AVHRR-NDVI vs. Landsat-NDVI,
but not with the change comparison (Table 3.8 and
Figs. 3.7a–d and 3.8a–d), where the GIMMS dataset had
the lowest RMSD. This could suggest that the GIMMS
dataset’s radiometric calibration and BRDF correction
results in more accurate and consistent data than the
methods applied to the LTDR V3 and FASIR datasets
(cf. Table 3.2). It should be noted that the global ap-
plication of BRDF models is precarious, as one needs
to address the balance between parsimony and complex-
ity, whilst accounting for potentially dubious input data
controlling key variables (Verstraete et al., 1996).

Previously several studies have compared AVHRR-
NDVI with Landsat-NDVI, but these studies were de-
signed for specific applications and their small sample
sizes need to be considered. Hall et al. (2006) compared
Landsat surface reflectance NDVI (based on three Land-
sat scenes) with NDVI from the FASIR and GIMMS
datasets and found mean absolute errors of 0.116 and
0.142 NDVI units, respectively, which is consistent with
the results of the absolute-values analysis (Table 3.8).
Brown et al. (2006) compared NDVI derived from 21
Landsat scenes (over land-cover types ranging from tun-
dra to tropical forest) with NDVI from SPOT-VGT,
MODIS, Sea-viewing Wide Field-of-view Sensor (SeaW-
iFS), and the GIMMS dataset, resulting in R2 values

of 0.63, 0.70, 0.62, and 0.81, respectively. These results
imply optimal performance using the GIMMS dataset,
contrary to our findings (Table 3.8). Pouliot et al. (2009)
compared NDVI time series from 10 Landsat images ac-
quired at the same location with NDVI derived from
a 1-km LAC AVHRR-NDVI dataset, obtaining a mean
absolute difference of < 7 %, which is about the same
order of magnitude as the RMSD values found in our
study (Table 3.8).

By averaging across the PAL, GIMMS, LTDR V3 (10-
day maximum-value composited), and FASIR datasets
a lower overall RMSD was obtained in the comparison
with Landsat-NDVI, with the average of the datasets
thus likely producing the best AVHRR-NDVI dataset
currently available. This indicates that the errors in the
datasets are to a certain degree unrelated, which is sur-
prising as all four datasets are based on the AVHRR
GAC level-1b archive (Kidwell, 1998). There are two
possible explanations: the different correction schemes
for sensor and atmospheric effects (cf. Table 3.2) in-
troduce independent errors in the respective datasets;
or the maximum-value compositing technique used in
the datasets, where each dataset may select a different
4.4×1.1 km2 pixel from the GAC archive to represent the
final pixel value. Two other studies also suggested infor-
mation may be lost due to maximum-value compositing
(Alcaraz-Segura et al., 2010a; Stow et al., 2007).

3.6 Conclusion

We investigated the level of agreement for the period
1982–1999 between four AVHRR-NDVI datasets (PAL,
GIMMS, LTDR V3, and FASIR). Additionally, these
four AVHRR-NDVI datasets and MODIS-NDVI were
validated against 11 764 Landsat-NDVI images sam-
pling all terrestrial globally important land-cover types.
The following summarizes the main conclusions reached
herein:

1. There is general agreement amongst the four
AVHRR-NDVI datasets in terms of trend over
48.1 % of the land surface. Equal medians,
equal variance, and good correlations between the
datasets were found over 9.9 %, 45.5 %, and 61.6 %
of the land surface, respectively.

2. Mostly consistent trends are found for Australia and
the tundra, whereas inconsistent trends are found
for Europe, Africa, and the Sahel. Moderate agree-
ment is found for the remaining regions.

3. The evaluation against Landsat-NDVI suggests that
the LTDR V3 dataset is the most accurate in terms
of absolute values and the GIMMS dataset the most
accurate for assessing temporal change. MODIS-
NDVI performed better than any AVHRR-NDVI
dataset.

4. The average of the four AVHRR-NDVI datasets
produces the best results when compared against
Landsat-NDVI. The errors in the AVHRR-NDVI



3.6. CONCLUSION 37

Table 3.10: The magnitude of atmospheric and sensor effects (including BRDF) on the NDVI. Table adapted from Donohue
et al. (2008).

Correction applied to dataset?

Source of variability Likely error on NDVI PAL GIMMS LTDR V3 FASIR

Atmospheric effects

Molecular scattering −0.23 over dense vegetation (El Saleous et al., 1997) Yes No Yes Yes

Ozone absorption +0.06 over sparse vegetation (El Saleous et al., 1997) Yes No Yes Yes

Aerosol scattering −0.20 over dense vegetation (Tanré et al., 1992) No Yes Yes Yes

Water-vapor absorption −0.12 over sparse vegetation (El Saleous et al., 1997) No No Yes No

Sensor effects

Radiometric calibration Varies depending on processing and sensor Yes Yes Yes Yes

Orbital drift Varies depending on processing and sensor No Yes Yes Yes

datasets thus appear to be to a certain degree un-
related.
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Chapter 4

The impact of forest regeneration on
streamflow in 12 meso-scale humid
tropical catchments1

Abstract. Although regenerating forests make up an
increasingly large portion of humid tropical landscapes,
little is known of their water use and effects on stream-
flow (Q). Since the 1950s the island of Puerto Rico has
experienced widespread abandonment of pastures and
agricultural lands, followed by forest regeneration. This
paper examines the possible impacts of these secondary
forests on several Q characteristics for 12 meso-scale
catchments (23–346 km2; mean precipitation 1720–3422
mm yr−1) with long (33–51 yr) and simultaneous records
for Q, precipitation (P ), potential evaporation (PET),
and land cover. A simple spatially-lumped, conceptual
rainfall-runoff model that uses daily P and PET time
series as inputs (HBV-light) was used to simulate Q for
each catchment. Annual time series of observed and sim-
ulated values of four Q characteristics were calculated.
A least-squares trend was fitted through annual time se-
ries of the residual difference between observed and sim-
ulated time series of each Q characteristic. From this the
total cumulative change Â was calculated, representing
the change in each Q characteristic after controlling for
climate variability and water storage carry-over effects
between years. Negative values of Â were found for most
catchments and Q characteristics, suggesting enhanced
actual evaporation overall following forest regeneration.
However, correlations between changes in urban or for-
est area and values of Â were insignificant (p≥ 0.389) for
all Q characteristics. This suggests there is no convinc-
ing evidence that changes in the chosen Q characteris-
tics in these Puerto Rican catchments can be ascribed to
changes in urban or forest area. The present results are
in line with previous studies of meso- and macro-scale
(sub-)tropical catchments, which generally found no sig-
nificant change in Q that can be attributed to changes
in forest cover. Possible explanations for the lack of a

1This chapter is an edited version of: Beck, H. E.; Bruijnzeel,
L. A.; van Dijk, A. I. J. M.; McVicar, T. R.; Scatena, F. N., and
Schellekens, J. The impact of forest regeneration on streamflow in
12 meso-scale humid tropical catchments. Hydrology and Earth
System Sciences, 17(7):2613–2635, 2013.

clear signal may include: errors in the land-cover, cli-
mate, Q, and/or catchment boundary data; changes in
forest area occurring mainly in the less rainy lowlands;
and heterogeneity in catchment response. Different re-
sults were obtained for different catchments, and using
a smaller subset of catchments could have led to very
different conclusions. This highlights the importance of
including multiple catchments in land-cover impact anal-
ysis at the meso scale.

4.1 Introduction

Tropical regions have experienced extensive changes in
land use and land cover during the last few decades (Lep-
ers et al., 2005). Continuously rising demands for crop
land and timber have led to substantial deforestation
in many regions (Drigo, 2005), and although the global
tropical deforestation rate remains high at 13 Mha yr−1

(FAO, 2006), forest regrowth on abandoned agricul-
tural land is increasing, particularly in Latin America
(Aide and Grau, 2004; Hecht, 2010) and South-East Asia
(cf. Fox et al., 2000; Xu et al., 1999). Because these
“secondary forests” account for approximately one-third
of the total tropical forest area (Brown and Lugo, 1990;
Hölscher et al., 2005), understanding the impact of forest
regrowth on water yield is important for water resources
management and planning purposes (Giambelluca, 2002;
Bruijnzeel, 2004) and the development of viable “Pay-
ments for Ecosystem Services” schemes (Landell-Mills
and Porras, 2002; Lele, 2009). However, despite this rec-
ognized importance, little is known of the water use of
secondary tropical forests, although there are indications
of enhanced water use during the period of most active
biomass accumulation (Giambelluca, 2002; Juhrbandt
et al., 2004; Hölscher et al., 2005).

The relationship between forest cover and streamflow
(Q) is subject to a long-standing and ongoing discus-
sion (Andréassian, 2004), also in the tropics (Bruijnzeel,
2004; Calder, 2005). The influence of forest cover change

39
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on flooding is particularly contentious (e.g. FAO, 2005;
Bradshaw et al., 2007; Van Dijk et al., 2009) whereas
the effect of forestation on tropical dry-season flows is
also under debate (Calder, 2005; Scott et al., 2005). The
general contention is that the net effect of an increase in
forest cover on dry-season flow depends on the “trade-
off” between increases in Q due to enhanced soil wa-
ter recharge on the one hand (as forestation generally
increases soil macroporosity and infiltration characteris-
tics; Ilstedt et al., 2007; Bonell et al., 2010; Zimmermann
et al., 2006, 2010; Hassler et al., 2011), and decreases in
soil water reserves and Q on the other hand due to the
higher water use of trees compared to crops, pasture,
or scrubs (Bruijnzeel, 1989, 2004; Jackson et al., 2005;
Scott et al., 2005). Reviews of micro-scale (< 1 km2) ex-
perimental catchment studies (e.g. Jackson et al., 2005;
Brown et al., 2005) – mostly conducted outside the trop-
ics and in non-degraded settings where soil infiltration
characteristics are not likely to be improved substan-
tially by forestation – suggest that the increase in vege-
tation water use is indeed more important, and thus an
increase in forest cover commonly leads to a decrease in
both total and dry-season Q. However, although direct
experimental evidence of the “infiltration trade-off hy-
pothesis” (Bruijnzeel, 1989; Bonell et al., 2010) is miss-
ing due to a lack of comprehensive studies, demonstrated
reductions in amounts of headwater- or hillslope storm-
flow production after reforesting severely degraded land
in various parts of the tropics (e.g. Chandler and Wal-
ter, 1998; Zhou et al., 2002; Zhang et al., 2004) should
be large enough to overcome the associated increases in
forest water use (Chandler, 2006; cf. Bruijnzeel, 2004;
Scott et al., 2005; Zhou et al., 2010). Indeed, as long-
term Q records for large, once degraded catchment areas
are becoming available, evidence of improved baseflows
(Qbf) following large-scale land rehabilitation is begin-
ning to be documented (Wilcox and Huang, 2010; Zhou
et al., 2010).

The tropical island of Puerto Rico provides a unique
opportunity to study the impacts of natural for-
est regeneration on Q at the meso-catchment scale
(1–10 000 km2), as high-quality and long-term hydro-
climatic records and sequential land-cover data are avail-
able. Since the 1950s, Puerto Rico has seen widespread
secondary forest regrowth on abandoned pastures, agri-
cultural land (mostly sugar cane), and coffee planta-
tions (Thomlinson et al., 1996; Aide et al., 2000; cf. Del
Mar López et al., 1998). Although previous work on
the relationship between land-cover change and Q us-
ing lumped meso- and macro-scale catchment data has
experienced some difficulty demonstrating unequivocal
results (e.g. Van Dijk et al., 2012), possibly stronger
conclusions may be obtained by selecting catchments
within similar regions (in this case Central Puerto Rico;
cf. Peña-Arancibia et al., 2010). On the whole, one would
expect marked drops in total Q and Qbf during forest re-
covery in areas where the general extent of soil surface
degradation before land abandonment was limited and

soil structural characteristics (and thus infiltration op-
portunities) therefore remained relatively unaffected by
forest regeneration (cf. Aide et al., 1996; Zou and Gon-
zalez, 1997). For catchments that experienced advanced
soil degradation prior to agricultural abandonment, ma-
jor declines in the volumes of both total Q and quick-
flow (Qqf) would be expected during forest regrowth due
to much improved infiltration and retention capacities
(cf. Chandler and Walter, 1998; Zhou et al., 2002). The
direction and magnitude of the change in Qbf will de-
pend on the trade-off between the changes in vegetation
water use and infiltration associated with forest regener-
ation (Bruijnzeel, 1989; Scott et al., 2005).

The following hypotheses are tested here: (1) there is
a negative relationship between the area under regener-
ating forest and the change in total Q (i.e. Qqf +Qbf);
(2) Qqf shows a negative relationship with area under re-
generating forest and a positive one with area under ur-
banization; and (3) depending on the trade-off between
the changes in vegetation water use and infiltration asso-
ciated with forest regrowth, Qbf shows either a negative,
no, or a positive relationship with the area under re-
generating forest. Specific objectives are to quantify the
effects of forest regeneration and urbanization on total
Q, Qqf, and Qqf.

4.2 Study area

Puerto Rico is an island with a tropical maritime cli-
mate, located in the north-eastern Caribbean occupying
∼ 8870 km2. The geology is dominated by the volcanic
Cordillera Central, with a few major outcrops of plutonic
rock (mostly granodiorite), and karstic limestones to-
wards the far north and south (Olcott, 1999). Soils devel-
oped in the volcanic substrates are largely clayey Ultisols
with a rapidly diminishing saturated hydraulic conduc-
tivity (Ks) with depth (Schellekens et al., 2004) whereas
the granodiorites produce less clayey Ultisols with a less
pronounced Ks profile (Kurtz et al., 2011). Island-wide
mean annual precipitation (P ) is ∼ 1700 mm yr−1 (Daly
et al., 1994, 2003). There is a moderate P seasonal-
ity, with the three driest months of the year (January–
March) receiving on average ∼ 300 mm in total and the
three wettest months of the year (September–November)
receiving on average ∼ 775 mm in total (Daly et al., 1994,
2003). The northern and eastern portions of the island
receive ∼ 30 % more P due to the rising of the moisture-
bearing trade-winds against the slopes of the central
mountain range (Calvesbert, 1970; Garćıa-Martinó et al.,
1996; Daly et al., 2003).

During the second half of the 20th century, socio-
economic changes in Puerto Rico led to migration from
(upland) rural areas and to (lowland) ubanization (Di-
etz, 1986). The associated abandonment of pastures and
agricultural fields allowed secondary forests to develop
over increasingly large areas as time progressed (Thom-
linson et al., 1996; Grau et al., 2003; Helmer, 2004; Parés-
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Ramos et al., 2008; Fig. 4.1). The dynamics of this for-
est recovery are well-documented, both in terms of its
expansion over time, and forest composition and struc-
ture (Aide et al., 1996, 2000; Chinea and Helmer, 2003;
Grau et al., 2003). Tree density typically reaches a peak
between 25 and 35 years after abandonment whereas
species richness and forest structure resemble those of
old-growth forest after ca. 40 yr of regeneration (Aide
et al., 2000). Total actual evaporation (ETa) of ma-
ture upland forest in the maritime tropical climate of
Puerto Rico is high compared to tropical continental
sites (Schellekens et al., 2000), mostly because of en-
hanced wet-canopy evaporation rates (Holwerda et al.,
2006, 2012), and the same may well apply to the island’s
secondary forests (cf. Giambelluca, 2002).

The locations of the 12 catchments examined here
and the respective changes in land cover over the period
1951–2000 (see also section 4.3.1) are shown in Fig. 4.1.
The size of the catchments ranges from 23 to 346 km2

(median size 42 km2), mean annual P varies between
1720 and 3422 mm yr−1 (median value 2021 mm yr−1),
and the length of simultaneous P , potential evaporation
(PET), and Q records between 33 and 51 yr (median du-
ration 44 yr; Table 4.1).

4.3 Data

4.3.1 Land cover

Land-cover maps were obtained for 1951, 1978, 1991,
and 2000 (Fig. 4.1). The maps for 1951 (Brockmann,
1952; Kennaway and Helmer, 2007) and 1978 (Ramos
and Lugo, 1994) were derived from aerial photography.
Although the maps for 1951 and 1978 were rasterized at
a resolution of ∼ 30 and ∼ 11 m, respectively, the actual
mapping resolution used by the photo interpreters is es-
timated at ∼ 300 and ∼ 50 m, respectively. The 1991 and
2000 maps2 (∼ 30-m resolution; Helmer and Ruefenacht,
2005) were derived from Landsat data using regression-
tree modelling and histogram matching. All land-cover
maps were reprojected to a common 0.0001◦ (∼ 11 m) ge-
ographical grid by nearest-neighbour interpolation. To
accommodate the different classification schemes used in
the respective mapping exercises, each land-cover class
was assigned to a generalized class (Table 4.2). For each
catchment the net changes in urban and forest areas from
the start of the simultaneous P , PET, andQ records (Ta-
ble 4.1) until 2000 were calculated by linear interpolation
of urban- and forest-area time series.

4.3.2 Streamflow

All available daily Q records were downloaded from the
US Geological Survey (USGS) National Water Informa-
tion System3 in December 2012, resulting in an initial

2Downloaded from https://www.sas.upenn.edu/lczodata/ in
June 2011.

3Accessible at http://waterdata.usgs.gov/nwis.

dataset of 111 gauging sites. Catchment areas were de-
rived for each site using the PCRaster software (Wes-
seling et al., 1996) and the USGS National Elevation
Dataset (NED) digital elevation model (∼ 30-m reso-
lution). The following criteria for inclusion here were
applied: (1) the USGS published estimate of catch-
ment area deviated by < 10 % from our computed catch-
ment area; (2) the length of the Q record between 1950
and 2005 was > 30 yr; and (3) the catchment was not
subject to flow regulation or affected by major anthro-
pogenic water extraction. The latter was assessed us-
ing annual USGS Water-Data Reports4 and a map of
water supply intakes in the Luquillo Experimental For-
est (Crook et al., 2007; an island-wide map of intakes
is lacking). The final dataset comprised 12 catchments
(Fig. 4.1 and Table 4.1). For the conversion of mea-
sured discharge [feet3 s−1] to areal mean Q [mm d−1]
the computed catchment area was used. The follow-
ing four Q characteristics were calculated, on an annual
basis, to study changes in Q through time: (1) the an-
nual 95th percentile (percent time not-exceeded) daily Q
(Qp95 [mm d−1]; indicative of peak flows); (2) the annual
mean Q (Qtot [mm yr−1]; indicative of total water yield);
(3) the annual 5th percentile daily Q (Qp5 [mm d−1];
indicative of low flows); and (4) the annual mean dry-
season (January–March) flow (Qdry [mm yr−1]).

For four catchments the daily Q strongly exceeded the
daily P (see section 4.4.1) on one or more days, indicat-
ing errors in the Q and/or P data. To prevent such er-
rors from biasing the results, for some catchments parts
of the Q record were excluded from the analysis. Specif-
ically, for the Bauta catchment data for 1996–1998 were
excluded, for the Grande de Lóıza catchment data prior
to 1961 were excluded, for the Fajardo catchment data
for 1989 were excluded, and for the Inabón catchment
data for 1975 were excluded.

4.3.3 Precipitation

Daily P data from the Global Historical Climatology
Network-Daily (GHCN-D) database5 (Gleason, 2002)
and from the El Verde station in north-eastern Puerto
Rico6 were used. After quality checks, the entire
record from the Cerro Maravilla station (included in
the GHCN-D database) and 1991–1994 data from the El
Verde station were excluded from the analysis. Stations
with a record > 20 yr were selected from the GHCN-D
database, resulting in a dataset comprising 70 stations
(including the El Verde station). Figure 4.2 presents the
number of P observations available for each day between
1955 and 2010. In addition, a map7 of mean annual P
derived using the Precipitation-elevation Regressions on

4Available at http://wdr.water.usgs.gov/.
5Downloaded from ftp://ftp.ncdc.noaa.gov/pub/data/

ghcn/daily/ in December 2010.
6Downloaded from http://luq.lternet.edu/data/lterdb14/

data/evrain.htm in July 2011.
7Downloaded from http://www.wcc.nrcs.usda.gov/ftpref/

support/climate/prism/ in September 2011.
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Figure 4.1: Maps showing the locations of the study catchments in Puerto Rico with the generalized land-cover classifications for: (a)
1951; (b) 1978; (c) 1991; and (d) 2000. Maps for 1951 and 1978 courtesy of E.H. Helmer and O.M. Ramos (USDA-IITF), respectively.
Catchments identified by letters and stream gauges by crosses. All maps in this paper are presented in the Albers equal area conic
projection with latitudinal limits 17.93◦N–18.52◦N and longitudinal limits 67.27◦W–65.59◦W.
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B:Bauta

C:GrandedeManat́ı

D:Cibuco

E:GrandedeLóıza
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Independent Slopes Model (PRISM) method (based on
data from 1963–1995; Daly et al., 1994, 2003) was used to
ensure reliable long-term, elevation-corrected P for the
catchments. The method used to obtain time series of
daily P for each catchment is described in section 4.4.1.

4.3.4 Minimum and maximum air tem-
perature

Daily minimum and maximum air temperature (Tmin

and Tmax, respectively [◦C]) were used to compute daily
time series of PET for each catchment. Tmin and Tmax

time series (> 20 yr) are available for 21 stations in
Puerto Rico within the GHCN-D database (Gleason,
2002). Figure 4.2 presents the number of daily Tmin and
Tmax observations between 1955 and 2010. Maps of mean
annual Tmin and Tmax from the WorldClim dataset8

(∼ 1-km resolution; Hijmans et al., 2005) were also used
to ensure reliable long-term, elevation-corrected Tmin

and Tmax for the catchments.

4.4 Methodology

Fig. 4.3 presents a flow diagram summarizing the var-
ious steps that were carried out to investigate whether
changes in forest and/or urban area have influenced the
observed Q characteristics. The various steps will be
explained in detail hereafter.

4.4.1 Spatio-temporal interpolation and
rescaling of climatic variables

Having reliable catchment-mean time series of the cli-
matic variables (P , Tmin, and Tmax) is important to pre-
vent spurious trends in the simulated Q from influencing
the results. To calculate time series of the climatic vari-
ables from 1955 (marking the start of many records) to
2010 for the catchments an approach was developed that:
(1) removed the linear trend from the time series for each
station and variable; (2) spatially interpolated the trend
and daily-irregular components; and (3) reunited them
on a per-pixel basis; after which (4) the time series were
rescaled. More specifically, the following steps were car-
ried out for each variable (where X denotes the variable
in question):

1. Tmin and Tmax data were converted from ◦C to K.
For each station with record length > 20 yr trends
were calculated from annual mean X time series
using the non-parametric Mann–Kendall statistical
test (Kendall, 1975; Mann, 1945) with Sen’s esti-
mate of slope (Sen, 1968).

2. For each station daily X time series were de-trended
and divided by the station mean such that the new
mean is unity.

8Downloaded from http://www.worldclim.org in Septem-
ber 2011.

Figure 4.3: Flow diagram summarizing the various steps that were
carried out to examine whether changes in forest and/or urban area
have influenced the observed Q characteristics.

3. Daily maps with a resolution of 0.02◦ (∼ 2 km) were
computed from time series of X trend (having a con-
stant value for each station) and from time series of
de-trended unity X values using spatial interpola-
tion (see next paragraph).

4. On a per-pixel basis the cumulative integral of the
trend was calculated and offset such that the mean
is unity, resulting in time series of net X change.

5. By multiplying the time series of net X change by
time series of de-trended unity X values, time series
of unity X values were obtained.

6. The time series of unity X values were multiplied
by a map of elevation-corrected long-term mean X
(PRISM for P , and WorldClim for Tmin and Tmax;
see sections 4.3.3 and 4.3.4, respectively).

7. Finally, daily X time series were calculated for each
catchment by averaging over all the pixels compris-
ing each catchment, and the Tmin and Tmax time
series were re-converted from K to ◦C.

We employed the computationally efficient inverse-
distance weighting (IDW; Shepard, 1968; Dirks et al.,
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Figure 4.2: Graph showing the number of daily observations for P , Tmax, and Tmin. Only stations with records > 20 yr were used.
The x-axis marks January 1st of each fifth year.

1998) technique for the spatial interpolation. The IDW
technique requires a value for the distance-decay param-
eter, which controls how much weight is given to nearby
stations relative to stations further away. Although it is
recognized that this parameter varies per location (e.g.,
Lu and Wong, 2007), following recommendations by Gar-
cia et al. (2008), and to reduce computational time, here
a constant value of 3 was assumed.

The present approach has two advantages over the cus-
tomary approach of using the nearest station with the
longest record. Firstly, information from all nearby sta-
tions with records > 20 yr is incorporated. Secondly, our
approach ensures unbiased mean annual values by rescal-
ing against elevation-corrected long-term means. On the
other hand, there are two caveats. First of all, portions
of a time series may originate from different stations,
thereby introducing spurious signals if, for instance, they
have different seasonal patterns. Furthermore, for P ,
step six of the approach merely changes the intensity of
the series, and does not correct for storm events unsam-
pled by the isolated “point” network of meteorological
stations.

4.4.2 Potential evaporation

The present study used the empirical Hargreaves equa-
tion (Hargreaves and Samani, 1985) according to guide-
lines set by the UN Food and Agriculture Organization
(FAO; Allen et al., 1998) to assess long-term changes
in the evaporative situation of the study catchments.
The Hargreaves equation (Hargreaves and Samani, 1985)
reads:

PET = 0.0023
√
Tmax − Tmin

×
(
Tmax + Tmin

2
+ 17.8

)
Ra, (4.1)

where Ra is the extraterrestrial radiation [mm d−1]. Ra
was computed as described by Allen et al. (1998). The
approach followed to obtain catchment-wide daily mean
time series of Tmin and Tmax is outlined in section 4.4.1.
The choice for the empirical Hargreaves method was mo-

tivated on the one hand by the lack of available long-
term data for the climatic variables required for more
physically based methods such as the Penman-Monteith
equation (Monteith, 1965), and on the other hand by
the better availability of Tmin and Tmax data. The Harg-
reaves method has been evaluated successfully against
PET based on the Penman–Monteith equation (Tra-
jkovic, 2007) and various other equations (Lu et al., 2005;
Sperna Weiland et al., 2011).

4.4.3 HBV-light model

The HBV-light model (Seibert, 2005) was used to sim-
ulate Q. HBV-light is a spatially-lumped, concep-
tual rainfall-runoff model based on the HBV model
(Bergström, 1976). HBV-light runs at a daily time step,
has two groundwater stores and one unsaturated-zone
store, and uses daily time series of P , PET, and T as
inputs. T was not relevant in the present case since it
is only used to drive the snow model subroutine. Rain-
fall interception is not estimated explicitly in HBV-light
but is implicit in the BETA, FC, and UZL parameters.
Although the model has been used predominantly in
temperate-zone catchments (e.g., Te Linde et al., 2008;
Steele-Dunne et al., 2008; Driessen et al., 2010), it has
also been used successfully in tropical settings and for a
range of catchment sizes, e.g., in Fiji (0.63 km2; Water-
loo et al., 2007), Southern Ecuador (75 km2; Plesca et al.,
2012), and Thailand (12 100 km2; Wilk et al., 2001). For
in-depth discussion of the model, see Seibert (2005). Ta-
ble 4.3 briefly describes the model parameters and lists
the calibration ranges used. We were unable to close
the water balance for several catchments after exhaust-
ing all possible parameter combinations, probably due
to errors in the PRISM P map, Q data and/or catch-
ment boundary data, (non-quantified) water extractions,
and/or inter-basin groundwater transfers. Therefore,
an additional parameter (PCORR) was introduced that
scaled P as required to match observed and predicted
Q. Note that HBV-light does not consider groundwater
flow within or between catchments.

Model parameters for each catchment were calibrated
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using Latin hypercube sampling (LHS; McKay et al.,
1979). LHS is a more efficient alternative (Yu et al.,
2001) to the commonly used Monte Carlo technique
(Metropolis, 1987; Beven, 1993; Seibert, 1999). Using
LHS the parameter space (Table 4.3) is split up in n
equal intervals. Values for the parameters are generated
by sampling each interval just once in a random manner.
The model is run n times with random combinations of
the parameter values from each interval for each param-
eter. Here n= 30 000 model runs were used to ensure
convergence of the performance criterion. The first 10 yr
of the record (Table 4.1) were used as spin-up period to
initialize the groundwater stores after which the model
was run for the entire period (i.e. the first 10 yr were run
twice). The split-sample procedure (Refsgaard, 1997)
was used to calibrate the parameters against data from
the second half of the period and validate the parameters
against data from the first half of the period.

Parameters of hydrological models are commonly cal-
ibrated using a composite of objective functions (i.e. a
summary statistic incorporating several measures of per-
formance; e.g., Madsen, 2000). Here, three different ob-
jective functions that strike a balance between accurate
representations of all portions of the hydrograph were
used. The first objective function represents the Nash-
Sutcliffe efficiency (Nash and Sutcliffe, 1970; NS [−]).
The NS is defined as:

NS = 1 −

k∑
t=1

(Qto − Qts)
2

k∑
t=1

(
Qto − Qo

)2 , (4.2)

where Qs and Qo represent 3-day mean simulated and
observed Q, respectively [mm d−1], t is the time step
[−], and the summation is over t= 1, 2, ..., k. The sec-
ond objective function (NSlog [−]) is the NS calculated
from log-transformed Qs and Qo, thereby giving more
weight to low Q values. NS and NSlog were calculated
from 3-D mean Q to account for the flashy nature of the
streams, which resulted in frequent mismatches between
daily peaks of observed and simulated Q, thereby con-
founding the calibration. The third and final objective
function represents the volume error (VE [%]):

VE = 100
Qs − Qo

Qo

. (4.3)

For each run, the objective functions were combined to
form a single aggregate measure using the combined-rank
method (Booij and Krol, 2010).

The main analysis was conducted using the 30 “best”
Q simulations. Parameter uncertainty (e.g., Beven,
1993; Seibert, 1997) was quantified as described in sec-
tion 4.4.4. It should be noted that the K2 parameter
in HBV-light was not calibrated, but was set to 1− kbf

(where kbf is the baseflow recession constant listed in
Table 4.1). In addition, the MAXBAS parameter was
not calibrated, but was set to one, since the travel time

for the catchments under study is likely to be less than
a day (confirmed by exploratory calibration efforts in
all catchments). The PCORR parameter was calibrated
only for catchments that had absolute VE values > 20 %
for the calibration period when PCORR was set to one
and parameter combinations were exhausted. For these
catchments, the range of PCORR values used for the cal-
ibration was an initial estimate ±0.05, where the initial
estimate was calculated based on the initially obtained
VE values.

4.4.4 Evaluation of the impacts of land-
cover change on streamflows

For each catchment and Q characteristic, annual time
series of the deviation between observations and simula-
tions were calculated as:

Dx
d = 100

Qxobs − Qxsim,d

Qxobs

, (4.4)

where D are the deviation time series [%], Qobs and
Qsim are annual time series of the observed and simu-
lated Q characteristics, respectively, x is the year, and
d= 1, 2, ..., 30 are the simulations. D integrates the
effects of P and PET variability and basin carry-over
storage on the Q characteristics, thereby isolating the
impact of other factors, notably land-cover change.

For each catchment and Q characteristic, the trend
(termed âJ [%]) in the annual time series of D prior to
2000, when land-cover data are available, was calculated
using the non-parametric jackknife resampling technique
(Quenouille, 1956; Tukey, 1958). From each of the 30
annual time series of D consisting of M values, this pro-
cedure takes M subsamples of M − 1 values by omitting
a different value each time. The trend in annual time
series of D prior to 2000 is re-computed for each sub-
sample, using the least-squares method, thus obtaining
for each Q characteristic a 30-by-M matrix of trend es-
timates. The mean of the trend estimates was taken as
the final trend estimate (âJ). The total change (Â [%])
in D prior to 2000 is subsequently calculated by:

Â = âJ L, (4.5)

where L [−] is the length of the record until 2000 (cf. Ta-
ble 4.1). Â can be interpreted as the cumulative change
in annual observed values of the Q characteristic after ac-
counting for the effects of climate variability and carry-
over water storage on the Q characteristic.

The standard error associated with âJ (termed σ̂J [%])
consists of two parts. The first (σ̂s [%]) was calculated
from the mean dispersion of â within the time series of
D, and is indicative of observational errors in P , PET,
and Q data, non-linearities in the land-cover impact on
Q, and/or possible defects in the HBV-light model struc-
ture. σ̂s was calculated using the jackknife technique as



48 CHAPTER 4. THE IMPACT OF FOREST REGENERATION ON STREAMFLOW

Table 4.3: HBV-Light model parameter units, descriptions, and ranges used for the calibration. The K2 and
MAXBAS parameters were not calibrated, but were set to 1-kbf (cf. Table 4.1) and one, respectively. For the
Valenciano, Canóvanas, Grande de Patillas, and Culebrinas catchments calibration ranges of 1.2–1.3, 0.7–0.8,
1.4–1.5, and 1.4–1.5, respectively, were used for PCORR. For the remaining eight catchments PCORR was set to
one. See section 4.4.3 for details.

Parameter Units Description Minimum Maximum

BETA - Shape coefficient of recharge function 1 6

FC mm Maximum soil moisture storage 50 750

K0 d−1 Recession coefficient of upper zone 0.05 0.99

K1 d−1 Recession coefficient of upper zone 0.01 0.50

K2 d−1 Recession coefficient of lower zone - -

LP - Soil moisture value above which actual ETa reaches PET 0.05 0.95

MAXBAS d Length of equilateral triangular weighting function - -

PERC mm d−1 Maximum percolation to lower zone 0 5

UZL mm Threshold parameter for extra outflow from upper zone 0 100

PCORR - P correction factor required to close water budget - -

follows:

σ̂s =
1

30

30∑
d=1

√√√√M − 1

M

M∑
i=1

(
âdi − âd

)2
, (4.6)

where âdi [%] are the estimates of a for subsamples
i= 1, 2, ..., M of annual D time series d= 1, 2, ..., 30.
The second part of the standard error (σ̂p [%]) was cal-
culated from the dispersion of the mean a amongst the
30 time series of D, and is mainly indicative of parameter
uncertainty. It was calculated as:

σ̂p = std
(
âd=1, âd=2, ..., âd=30

)
, (4.7)

where std refers to the standard deviation. The two parts
were combined to yield the standard error of âJ (σ̂J [%])
as follows:

σ̂J = σ̂s + σ̂p. (4.8)

The standard error associated with Â (σ̂Â [%]) is given
by:

σ̂Â = σ̂J L. (4.9)

To examine whether changes in forest and/or urban
area influenced the four observed Q characteristics, cor-
relation coefficients were calculated between amounts of
change in forest or urban area per catchment and corre-
sponding values of Â. Conventionally a significance level
of 0.05 is applied, but this level was adjusted for the
number of inferences made (four in the present study)
to 0.01 using the Bonferroni procedure (Bland and Alt-
man, 1995).

4.5 Results

4.5.1 Changes in climatic variables

Using the new P dataset (1955–2010), which com-
prises the records from 70 stations, trends for the is-
land ranging from −0.25 to +0.41 % yr−1 (mean value
+0.02 % yr−1) were found (Fig. 4.4a). In addition, a

strong north-south disparity was observed, with positive
P trends mainly identified to the south of the Cordillera
Central, and negative trends north of it (Fig. 4.4a). Like-
wise, the new PET dataset (1955–2010), based on 21 sta-
tions, shows similar magnitudes of change, with per-pixel
values ranging from −0.30 to +0.17 % yr−1 (mean value
−0.03 % yr−1), but with a less clear spatial pattern com-
pared to P (Fig. 4.4b).

4.5.2 HBV-light model performance

Table 4.4 lists the calibrated parameter values for the
HBV-light model plus objective function scores for the
calibration and validation periods for each catchment.
Median Nash-Sutcliffe (NS) values of 0.64 and 0.63 (me-
dian of 12 values, where each value represents the mean
NS value of the 30 best simulations for each catchment)
were obtained for the calibration and validation periods,
respectively (Table 4.4). The median absolute VE values
were 3.1 and 7.2 % (median of 12 values, where each value
represents the mean VE value of the 30 best simulations
for each catchment) for the calibration and validation
periods, respectively (Table 4.4). Catchments F, G, I,
and L required optimization of the PCORR parameter
(cf. Table 4.4).

4.5.3 Changes in land cover

Figure 4.5 shows the land-cover time series for each
catchment. In all catchments forest and urban areas in-
creased markedly between 1951 and 2000 at the expense
of pasture and agricultural areas. During the period of
simultaneous P , PET, and Q recording (Table 4.1) the
net change in forest and urban areas for the study catch-
ments ranged from +2 to +55 % (mean value +26 %) and
from +2 to +11 % (mean value +7 %), respectively. The
changes in pasture and agricultural areas ranged from
−19 to +26 % (mean value −7 %) and from −63 to +9 %
(mean value −26 %), respectively.
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Figure 4.4: The trend [% yr−1] from 1955 to 2010 for annual mean (a) P and (b) PET. Significant as well as insignificant trends are
shown. The points mark stations with > 20 yr time series of (a) P , and (b) Tmin and Tmax (used to derive PET, see section 4.4.2). The
numbers represent the last five digits of the GHCN-D station identification code. Catchments identified by letters and stream gauges
by crosses.

4.5.4 Changes in streamflow characteris-
tics

For each catchment and Q characteristic, Fig. 4.6 shows
annual time series of the difference between observed
and simulated Q as expressed by D (Eq. 4.4) and the
corresponding fitted trend lines, whereas Table 4.5 lists
values of the total change Â (Eq. 4.5) and the corre-
sponding error σ̂Â (Eq. 4.9). Catchments with low NS
values generally gave higher σ̂Â values (cf. Tables 4.4
and 4.5). In general Dtot shows the least temporal vari-
ability (Fig. 4.6), which is reflected by low σ̂Â values for

Âtot (Table 4.5). The low temporal variability of Qtot is
likely due to the low degree of sampling error associated
with the calculation of annual mean Q. Most catchments
show progressive decreases over time in their time series
of D (Fig. 4.6), as indicated by the mostly negative Â
values (Table 4.5), suggesting decreases in observed Q
characteristics that are unrelated to carry-over effects
of water storage and climate variability. The most pro-
nounced decreases in Qtot were found for catchments B,
C, and J, whereas a moderate increase was found for
catchment D. Pronounced decreases in both Q charac-
teristics related to low flows (Qp5 and Qdry) were found
for catchments A, C, F, G, H, J, K, and L, whereas

a (moderate) increase was found only for catchment I.
Clear decreases in the Q characteristic related to peak
flows (Qp95) were found for catchments B, C, I, and J,
whereas strong increases were found for catchments D,
H, and L.

4.5.5 Impacts of land-cover change on
streamflows

Figure 4.7 shows regressions between the amount of ur-
ban and forest area change vs. the cumulative change
in annual time series of D prior to 2000 (expressed
by Â in Eq. 4.5) for each Q characteristic. In spite
of strong increases in forest and urban area, and pro-
nounced changes in D over time for the Q characteristics
of several catchments, all correlations were insignificant
(p≥ 0.389). Nonetheless, a weak (i.e. non-significant)
positive relationship can be observed between changes in
forest cover and changes in annual total streamflow Qtot,
when excluding catchments C and J (which appear to be
outliers; Fig. 4.7c).
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Table 4.4: Calibrated parameter values for the single best simulation by the HBV-Light model, and objective-function scores (mean
of the 30 best simulations) for the calibration and validation periods, computed from 3-day means. The PCORR parameter was only
calibrated for four catchments.
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Calibrated parameter values for the simulation with the best performance

BETA [-] 1.351 1.306 0.940 2.887 2.999 0.862 3.204 4.212 1.056 1.041 1.117 3.633

FC [mm] 995 927 651 493 874 394 918 889 514 987 918 893

K0 [d−1] 0.934 0.521 0.666 0.756 0.611 0.699 0.778 0.752 0.462 0.514 0.337 0.508

K1 [d−1] 0.284 0.353 0.366 0.210 0.441 0.274 0.449 0.270 0.489 0.246 0.323 0.492

LP [-] 0.685 0.328 0.146 0.854 0.888 0.144 0.443 0.901 0.525 0.443 0.420 0.851

PERC [mm d−1] 4.645 2.571 1.697 1.807 1.757 1.490 1.832 2.706 3.303 3.065 4.524 3.077

UZL [mm] 80 3 4 0 7 4 8 0 7 65 2 19

PCORR [-] 1.000 1.000 1.000 1.000 1.000 1.215 0.712 1.000 1.415 1.000 1.000 1.400

Objective-function scores for the calibration period, computed from 3-day means

NS [-] 0.62 0.63 0.63 0.65 0.77 0.72 0.75 0.65 0.78 0.58 0.46 0.37

NSlog [-] 0.60 0.71 0.76 0.42 0.76 0.60 0.56 0.58 0.68 0.56 0.53 0.60

VE [%] −6.22 4.11 11.97 −1.63 −7.56 1.78 12.63 2.22 −0.69 −0.09 −13.26 −1.01

Objective-function scores for the validation period, computed from 3-day means

NS [-] 0.50 0.64 0.68 0.71 0.73 0.68 0.63 0.54 0.77 0.62 0.40 0.52

NSlog [-] 0.60 0.68 0.60 0.63 0.74 0.63 0.50 0.53 0.67 0.67 0.60 0.77

VE [%] −1.27 −16.91 −13.65 0.44 −8.83 −3.95 10.81 −7.57 −1.91 −15.64 −6.89 −4.79

4.6 Discussion

4.6.1 Changes in climatic variables

Previous research on long-term changes in P in Puerto
Rico, mostly using a limited number of climate stations,
has suggested progressive declines in long-term P over
1900–2000 (Larsen, 2000; Van der Molen, 2002), but to
the authors’ knowledge no comprehensive analysis has
been conducted for the entire island. Using the new
P dataset (1955–2010) a strong north-south disparity
in terms of trends was observed (Fig. 4.4a), which may
be attributed to changes in wind patterns induced by
changes in sea surface temperature (Comarazamy and
González, 2011; cf. Van der Molen et al., 2006). Al-
though trends in PET (1955–2010) were just as strong,
they showed a less clear spatial pattern. Nevertheless,
these findings reaffirm the importance of accounting for
climate variability in studies assessing the effects of land-
cover changes on Q.

4.6.2 HBV-light model performance

The HBV-light performance was good for both the cal-
ibration and validation periods (Table 4.4), suggesting
that the simulated Q for the catchments can be used
with confidence. Note that strong land-cover effects

would have deteriorated performance statistics for the
validation period. Several catchments required optimiza-
tion of the PCORR parameter (cf. Table 4.4), possibly
due to biases in the PRISM P map, uncertainties in
the Q and/or catchment boundary data, water extrac-
tions, inter-basin groundwater transfers (potentially ex-
acerbated by karst), and/or water recycling (e.g., Ellison
et al., 2012), which combined may cancel out or amplify
one another. However, the influence of the P scaling on
the results is probably limited because the simulated Q
was only used to control for climate and storage carry-
over effects.

4.6.3 Impacts of land-cover change on
streamflows

We were unable to support the three hypotheses be-
cause no significant relationships (p< 0.01) were found
between the change in forest cover or urban area, and the
change in the investigated Q characteristics across the
12 catchments (Fig. 4.7). This result agrees with previ-
ous meso- to macro-scale catchment studies in the trop-
ics, subtropics, and warm-temperate regions (Table 4.6),
which mostly failed to demonstrate a clear relationship
between Q and change in forest area. Our use of multi-
ple catchments proved important since many individual
catchments showed pronounced changes in flow charac-
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Figure 4.5: Changes with time in area of the dominant land-cover types for the study catchments. Graphs are based on generalized
(cf. Table 4.2) land-cover classification maps for the years 1951, 1978, 1991, and 2000.

teristics that might well have been attributed to land-
cover change otherwise.

Nevertheless, a weak positive relationship was ob-
served between the change in forest cover and the change
in Qtot (Fig. 4.7c), tentatively suggesting that regenera-
tion of forests leads to increases in Q in Puerto Rico. If
true, this would imply that in the investigated catch-
ments the increase in Q due to enhanced rainfall in-
filtration during forest regrowth overrides the decrease
in Q associated with the greater water use of the ag-
grading forests (cf. Bruijnzeel, 1989; Scott et al., 2005).
The soils beneath young secondary forests in Puerto Rico
show higher bulk density than beneath mature secondary
forests (Weaver et al., 1987; Lugo and Scatena, 1995) and
are less structured (Lugo and Helmer, 2004). Presum-
ably, this reflects soil compaction by livestock and crop-
ping prior to abandonment and subsequent secondary
forest regeneration. However, the general level of soil
degradation under pasture in Puerto Rico (cf. Aide et al.,
1996) is probably not sufficient to cause widespread oc-
currence of overland flow, although surface erosion under
sugar cane and coffee plantations has been reported to
be rampant in parts of the island (e.g., Del Mar López
et al., 1998; Smith and Abruña, 1955). Unfortunately,
to date, no unequivocal case of a positive relationship
between changes in Q and reforested degraded area has

been reported in the tropics (cf. Table 4.6), although
demonstrated decreases in the amounts of headwater- or
hillslope stormflow generation after reforesting severely
degraded land (Chandler and Walter, 1998; Zhou et al.,
2002; Zhang et al., 2004; Sun et al., 2006) must be
considered large enough to overcome the associated in-
creases in forest water use (Chandler, 2006; cf. Brui-
jnzeel, 2004; Scott et al., 2005). Nevertheless, long-term
Q data for large, once degraded but subsequently reha-
bilitated catchments in sub-humid Texas (Wilcox and
Huang, 2010) and the humid Red Soils region of South
China (Zhou et al., 2010) have recently indicated gradu-
ally increased Qbf over prolonged periods of time follow-
ing large-scale land rehabilitation and regreening, sug-
gesting soil improvement to be the dominant factor in
these cases. Further process-based work is required to
substantiate this contention. Similarly, pending the re-
sults of hydrological process studies in Puerto Rico’s re-
generating forests (in particular, infiltration and soil wa-
ter retention vs. forest water use) the presently obtained
positive relationships between the change in forest cover
and the change in Qtot may be spurious.

The present investigation is confounded somewhat by
modest urbanization occurring simultaneously with for-
est regeneration in some of the investigated catchments
(Fig. 4.5). Since urbanization typically increases the
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Figure 4.6: Annual time series of Dp95, Dtot, Dp5, and Ddry (displayed, respectively, from top to bottom in each panel; calculated using
Eq. 4.4) and fitted trend lines. For clarity the Dp95, Dp5, and Ddry time series were offset by +100, −100, and −200 %, respectively.

area of impervious surfaces, thereby enhancing the fre-
quency and intensity of infiltration-excess overland flow,
more Qqf is produced (e.g., Harto et al., 1998; De-
Walle et al., 2000; Ziegler et al., 2004; Rijsdijk et al.,
2007). This, if progressing beyond a critical threshold,
can even result in reductions in Qbf (Van der Weert,
1994; Bruijnzeel, 1989, 2004) on top of the reductions
incurred already by the higher water use of the regen-
erating forest (Giambelluca, 2002). However, no signif-
icant relationships (p< 0.01) between the degree of ur-
banization and changes in any of the observed Q char-
acteristics in our catchments were identified (Fig. 4.7).
This is probably due to insufficient amounts of urban-
ization occurring (+2 to +11 %, mean value of +7 %;
Fig. 4.5). Similarly, studies of the “flashiness” (sensu
Baker et al., 2007) of the runoff behaviour of urban-
ized and forested catchments in Puerto Rico revealed no
differences (Ramı́rez et al., 2009; Phillips and Scatena,
2010). However, Phillips and Scatena (2010) did detect
significant differences (p< 0.05) in the frequency of stage
change (cf. McMahon et al., 2003), possibly indicating
locally enhanced Qqf due to urbanization.

Wu et al. (2007) reported a change in Qtot of −25 %
(corrected for changes in P using a single P station that
was not included in the current study as it did not meet
the necessary quality requirements), between 1973–1980

and 1988–1995 for the Ŕıo Fajardo catchment in north-
eastern Puerto Rico (here identified as catchment H).
Wu et al. (2007) attributed this negative change in Q to
the small amount of forest regeneration occurring dur-
ing that period (estimated at 8 % based on the inter-
polated time series shown in Fig. 4.5). For the same
catchment, here a similar change in Qtot of −31 % (cal-
culated using Dtot) was found between the respective
periods. However, a much smaller estimated change of
−5 (± 4) % was obtained between the respective periods
when taking into account the complete record (48 yr),
using the calculated trend in Dtot prior to 2000 (âJ) and
the corresponding standard error (σ̂J, Eq. 4.8). Thus,
Wu et al. (2007) may have overestimated the reduction
in Qtot for the Ŕıo Fajardo catchment because they only
used part of the available record. Additionally, given
that the Ŕıo Fajardo catchment appears to be an out-
lier in the present analysis (Figs. 4.7e and 4.7f) possibly
due to non-quantified anthropogenic water extractions,
any inferences for this catchment should be viewed with
caution.
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Table 4.5: Cumulative change in the difference between observed and simulated Q characteristics, as expressed by Â (Eq. 4.5), and
corresponding standard errors (σ̂Â; Eq. 4.9) for the 12 study catchments. The + and − signs indicate, respectively, increases and decreases

in Â. The change covers the start of the record (cf. Table 4.1) until 2000.
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Figure 4.7: Net changes in forest and urban areas plotted against
Ap95 (a–b), Qtot (c–d), Qp5 (e–f), and Qdry (g–h) values (Eq. 4.5;
Table 4.5). Each letter in the scatter plots represents a different
catchment. The change covers the start of the record (cf. Table
4.1) until 2000.

4.6.4 Field-based estimates of vegeta-
tion water use

To explore the possible changes in total water yield that
may be associated with a conversion from shaded cof-
fee, sugar cane or pasture (the dominant land uses in
Puerto Rico in 1951, see section 4.3.1) to (semi-)mature
secondary forest (current situation), it is of interest to
compare the typical amounts of total water use (ETa)
by the respective vegetation types. Field-based esti-
mates of transpiration plus soil evaporation for shaded
coffee and sugar cane in Puerto Rico range between 1.4–
3.2 mm d−1 (Lin, 2010; Gutiérrez and Meinzer, 1994) and
2.5–4.6 mm d−1 (Vázquez, 1970; Fuhriman and Smith,
1951; Goyal and González-Fuentes, 1989; cf. Harm-
sen, 2003), respectively. The mean soil water uptake
of various well-watered (lowland) pastures in northern
Puerto Rico was estimated at 2.8 mm d−1 (Van der
Molen, 2002), whereas for mature upland (Tabonuco)
forests, values converge around 3.0 (± 0.1) mm d−1 (Van
der Molen, 2002; Wu et al., 2006). Thus, despite the
deeper root systems of the forests (cf. Nepstad et al.,
1994), mean soil water use for the agricultural crops un-
der consideration, pasture, and forests is quite similar,
possibly due to the relatively rainy climate prevailing in
Puerto Rico all year round (Calvesbert, 1970). To this,
rainfall interception losses (higher for forest) should be
added. The best estimates of rainfall interception for
mature Tabonuco forest (∼ 21 % of mean annual P ; Hol-
werda et al., 2006) translate to ca. 1.2 mm d−1 for an
annual P of 2000 mm yr−1 (i.e. the approximate average
rainfall for the 12 study catchments), vs. 0.9 mm d−1 for
shaded coffee (Siles et al., 2010) and 0.2 mm d−1 for sugar
cane (Leopoldo et al., 1981). Extrapolating the above-
mentioned average values to a year, gives mean esti-
mated ETa totals for shaded coffee, sugar cane, and pas-
ture of, respectively, ca. 1170, 1355, and 1020 mm yr−1

vs. ca. 1515 mm yr−1 for mature forest. Thus, the full
conversion from pasture or crop land to mature forest
could potentially change Qtot by about −160 mm yr−1

(in the case of sugar cane) to −495 mm yr−1 (in the case
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of pasture).
For the catchments examined here a mean modeled

change in Qtot of −86 mm yr−1 (standard deviation
±124 mm yr−1) was found (calculated from values of Âtot

and Qtot listed in Tables 4.5 and 4.1, respectively). If it
is assumed that this change was solely due to the mean
change in forest cover of +26 %, then the +100 % change
in forest cover would have resulted in a change in Qtot

of about −331 (± 478) mm yr−1. Although the modeled
change in Qtot lies in between the above estimates based
on local field studies of ETa, the very high standard devi-
ation of the estimated modeled change in Qtot suggests
that this agreement may be mere chance. Therefore,
the question re-emerges as to why analysis of the im-
pacts of land-cover change on Q in meso-scale tropical
catchments does not confirm the findings of micro-scale
experimental studies, which clearly demonstrate a rela-
tionship between change in forest area and change in Q
(Bosch and Hewlett, 1982; Bruijnzeel, 1990; Sahin and
Hall, 1996; Brown et al., 2005; Jackson et al., 2005).

4.6.5 Potential explanations for the lack
of relationships

Upscaling in hydrology is a challenging issue that has
received considerable attention (e.g., Peterson, 2000;
Rodriguez-Iturbe, 2000; McDonnell et al., 2007; Blöschl
and Montanari, 2010). For many studies the lack of a
clear relationship between deforestation and change in
Q can be explained by the rapid regeneration of tropical
forests, where ETa quickly reverts back to its original
level and possibly exceeds it for decades (Giambelluca,
2002; Bruijnzeel, 2004; Juhrbandt et al., 2004). However,
this explanation does not apply to the present study,
since the catchments were exploited as pastures or agri-
cultural fields for a sustained period of time prior to
their abandonment and subsequent forest regeneration.
Another possible reason for the inconclusive results ob-
tained by many studies is the use of seasonal or annual
mean Q characteristics only, whereas it is generally pre-
ferred to use characteristics related to the frequency and
magnitude of Q (Alila et al., 2009, 2010), particularly
when evaluating the change in peak flows. Finally, the
failure to correct for climatic variability by many stud-
ies may also have led to inconclusive or even erroneous
outcomes.

The first among the potential explanations for the lack
of relationship between land-cover change and Q char-
acteristics in Puerto Rico is covariance between land
cover and climate in space, due to landscape ecology
and history (cf. Van Dijk et al., 2012), or in time, due to
land-cover changes altering the climate (Van der Molen,
2002; Pielke et al., 2007). Several meso-scale atmo-
spheric modelling studies have produced conflicting re-
sults regarding the existence of such a relationship for
Puerto Rico (Van der Molen et al., 2006; Comarazamy
and González, 2011). The contrasting P trends reported
here for different parts of the island (Fig. 4.4a) are also

unable to provide evidence since similar magnitudes of
forest regeneration occur across the island (Fig. 4.1).
Also, because observed P and PET time series were in-
put to the HBV-light model, most of the covariance be-
tween land-cover change, and P and PET should have
been accounted for in the present analysis.

A second potential explanation is that the land-cover,
P , PET, Q, and catchment boundary data used here
contain more uncertainty than those used in small, com-
monly well instrumented, experimental studies. Using
data for 278 Australian catchments Van Dijk et al. (2012)
showed that the introduction of noise to long-term means
of observed PET, P , and Q reduced the likelihood of
detecting a land-cover signal. Here, as different method-
ologies were employed to derive the land-cover maps for
the different years, and because the maps had different
spatial resolutions and classification schemes (see sec-
tion 4.3.1), it is conceivable that the land-cover time se-
ries contained uncertainties. For P a higher station den-
sity is probably desirable, particularly in tropical areas
where the uncertainty in estimated catchment-wide P is
exacerbated by the predominantly convective character
of P and the limited spatial extent of individual storm
cells (Nieuwolt, 1977; Hastenrath, 1991). Likewise, the
PET data should also be viewed with caution, since net
radiation, wind speed, and relative humidity, other dom-
inant factors controlling PET magnitude and trends (see
McVicar et al., 2012, and references therein), were not
explicitly included in its calculation (cf. Eq. 4.1). The
error in the Puerto Rico Q data is estimated to be 3–
6 % (Sauer and Meyer, 1992). The cumulative error in
annual P , PET, and Q was quantified by σ̂Â (Eq. 4.9).
Eventhough σ̂Â does not account for the error in the
land-cover data or for drift errors in the P , PET, and/or
Q data during the study period, values of σ̂Â already

constitute a substantial portion of the variance in Â val-
ues (the estimated total change in the observed Q) for
all Q characteristics (cf. Table 4.5, and Fig. 4.7). This
suggests that errors in land-cover, P , PET, and Q data
may have restricted the detection of a relationship be-
tween land-cover change and Q characteristics in Puerto
Rico. Kundzewicz and Robson (2004) and Chappell and
Tych (2012) also suggested that a high degree of obser-
vational error may mask the identification of Q change.

A third potential explanation is that the amount of
forest area change in the investigated catchments is less
than that of most small catchment experimental stud-
ies. Based on small catchment experiments the criti-
cal threshold value for forest area change beyond which
changes in Q can be detected is generally assumed to
be ca. 20 % (e.g., Bosch and Hewlett, 1982). Increases
in forest area for the investigated catchments were 2 to
55 % (mean 26 %), with increases exceeding 20 % in six
of the twelve catchments. However, forest regeneration
progressed from the headwaters to the lowlands (Grau
et al., 2003) and by the time the records started (cf. Ta-
ble 4.1) most of the headwaters would have been refor-
ested already. Since most Q is produced in these rainier
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headwater areas (Garćıa-Martinó et al., 1996) the ob-
served overall change in Q may be far less than expected
on the basis of lumped representations of P and forest
area.

A fourth potential explanation relates to anthro-
pogenic water extractions from the investigated catch-
ments. Irrigation on agricultural fields from local wells
may have increased ETa, thereby masking the effect of
increasing forest cover on Q. However, irrigation of sugar
cane and pineapple in Puerto Rico occurs only on the
drier southern coastal plains, and most irrigation wa-
ter originates from lakes outside the study catchments
(Molina-Rivera and Gómez-Gómez, 2008). Therefore,
irrigation effects can probably be excluded as a possi-
ble explanation. However, water withdrawals associated
with urbanization may have confounded the results, pos-
sibly causing reductions in Qbf that are unrelated to
changes in forest cover. Although catchments affected by
major water extraction were excluded from the analysis
(see section 4.3.2), it is possible that some catchments
contain undocumented water intakes.

A fifth potential explanation, proposed by Zhou et al.
(2010) and applicable to humid tropical settings, is
that ETa under such conditions is constrained by PET
(i.e. energy limited; Calder, 1998), and therefore the
expected increases in ETa due to forest regrowth are
not evident in the Q record. However, the intercep-
tion evaporation component of ETa can be well in ex-
cess of PET, particularly on mountainous maritime is-
lands (Schellekens et al., 1999; Roberts et al., 2005; Hol-
werda et al., 2006; McJannet et al., 2007; Giambelluca
et al., 2009; Holwerda et al., 2012). Moreover, an in-
significant correlation was obtained between forest cover
change and mean Q during the dry season (January–
March; Qdry), when PET is not expected to be a limiting
factor (Fig. 4.7g). Hence, this is not seen as a convincing
explanation.

Finally, a sixth potential explanation concerns hetero-
geneity between the study catchments in terms of vege-
tation cover and land-use history prior to land abandon-
ment (not accounted for by the semi-quantitative classi-
fication of the present study), morphology, geology, and
soils (McDonnell et al., 2007), influencing the response
of Q to changes in forest cover. In addition, the use of
lumped values for the climate variables at the catchment
scale may not be valid due to spatial heterogeneity of P–
PET–Q relationships (e.g., Garćıa-Martinó et al., 1996;
Blöschl et al., 2007; Donohue et al., 2011).

4.7 Conclusion

Although there was considerable variability in the
change in Q across the 12 examined catchments, the
correlations between changes in urban or forest area and
changes in Q were insignificant (p≥ 0.389) for all four Q
characteristics. Consequently, there is little evidence to
support the hypothesis that there is a relationship be-

tween the degree of secondary forest regeneration and
the change in Q for the investigated catchments. Nev-
ertheless, most catchments exhibited decreases in Qtot,
which may be attributable to enhanced vegetation water
use associated with forest regeneration.

The most likely reasons for the lack of relationship be-
tween land-cover change and Q characteristics in Puerto
Rico include (1) errors in the land cover, climate, Q,
and/or catchment boundary data used in the analysis;
(2) generation of Q is mostly in the rainier headwater
areas that were already forested at the start of Q obser-
vations whereas subsequent changes in forest area mainly
occurred in the drier lowlands; and (3) heterogeneity in
the catchment response. Overall, it seems that the hy-
drological impacts of forest regeneration in Puerto Rico
are currently unpredictable at the mesoscale, and fur-
ther advances in our understanding are hampered by
the quality, availability, and record length of the climatic
and flow data. Our findings highlight the importance of
catchment-scale analyses using multiple catchments but
at the same time confirm the need for additional pro-
cess studies at all stages of forest regeneration, notably
of vegetation water use (both rainfall interception and
transpiration) and changes in lowland hillslope hydro-
logical response.
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Chapter 5

Global patterns in baseflow index and
recession derived from 3520 small
catchments1

Abstract. Baseflow is the portion of streamflow that
is fed by groundwater storage and/or other delayed
sources, and is important for water resources manage-
ment, river ecology, and water quality. Previous studies
have constructed models to estimate baseflow character-
istics from catchment physiographic characteristics and
applied these to ungauged regions. However, these stud-
ies generally used a relatively small number of catch-
ments (< 200) and were regional in nature, which may
have led to less reliable models having limited applica-
bility elsewhere. This study uses a highly heterogeneous
set of 3520 catchments from around the globe to con-
struct reliable, widely applicable models using 18 phys-
iographic characteristics to estimate two important base-
flow characteristics: (1) the baseflow index (BFI [-]), de-
fined as the ratio of long-term mean baseflow to total
streamflow; and (2) the baseflow recession constant (k
[d−1]), defined as the rate of baseflow decay. Regression
analysis results revealed that BFI and k were related to
several physiographic characteristics, notably mean an-
nual potential evaporation, mean catchment elevation,
mean surface slope, fraction of open water, and the mean
sand content of the soil. Ensembles of artificial neural
networks (obtained by sub-sampling the original set of
catchments) were used to estimate the baseflow charac-
teristics from physiographic data. The catchment-scale
estimation of the baseflow characteristics demonstrated
encouraging performance with R2 values of 0.82 for BFI
and 0.73 for k. Global maps of estimated BFI and k
were obtained using global physiographic data as input
to the established models. The uncertainty was lowest
in North America, Europe, and southeastern Australia,
where most catchments were located, and highest in ar-
eas with limited streamflow data (arid, semi-arid, and
Arctic regions). These global maps should prove useful
for various large-scale hydrological applications.

1This chapter is an edited version of: Beck, H. E; van Dijk, A. I.
J. M; Miralles, D. G.; de Jeu, R. A. M.; Bruijnzeel., L. A.; McVicar,
T. R., and Schellekens, J. Global patterns in baseflow index and
recession derived from 3520 small catchments. Submitted, 2013.

5.1 Introduction

Baseflow is the portion of streamflow (Q) originating
from groundwater storage and/or other delayed sources
(Hall, 1968). Knowledge of the baseflow regime is impor-
tant for a number of purposes: water resources manage-
ment; aquatic ecosystem preservation; hydropower gen-
eration; contaminant transport; and low-flow forecast-
ing (e.g., Campolo et al., 1999; Brauman et al., 2007;
Cyr et al., 2011, and references therein). Such knowl-
edge is not directly available for ungauged catchments
and hence for most of the terrestrial land surface (Fekete
and Vörösmarty, 2007) necessitating regionalization pro-
cedures to transfer model parameters or Q characteris-
tics from gauged to ungauged catchments (e.g., Para-
jka et al., 2005a; Yadav et al., 2007; Oudin et al., 2008;
Zhang et al., 2008b). Two important baseflow character-
istics are: (1) the baseflow index (BFI [-]), defined as the
ratio of long-term mean baseflow to total Q (Smakhtin,
2001); and (2) the recession constant (k [d−1]), defined
as the rate of baseflow decay (Vogel and Kroll, 1996).

Several regression-based regionalization studies have
established models to estimate BFI or k from catchment
physiographic characteristics (e.g., Mazvimavi et al.,
2005; Brandes et al., 2005; Longobardi and Villani, 2008;
Van Dijk, 2010; Peña-Arancibia et al., 2010; Krakauer
and Temimi, 2011; Ahiablame et al., 2013). Geology
and soils were generally among the most important phys-
iographic characteristics identified in these studies, al-
though topography, climate, and/or land cover have also
proven useful in some cases. Although previously devel-
oped models may, in theory, be used to estimate base-
flow characteristics for ungauged catchments, they suf-
fer from one or more of the following shortcomings that
limit their use in macro- and global-scale applications.
First, they were mainly based on a relatively small num-
ber of Q gauging stations (< 200), which can lead to
less reliable and/or overfitted models. Second, they fo-
cused on a regional scale and used regional data sets to
characterize geology or soils, thereby potentially restrict-
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ing their larger-scale applicability. Third, most studies
did not evaluate the generalization ability of the model
using an independent set of catchments, and thus it is
difficult to judge the true performance of the models.
Finally, they reached conflicting conclusions regarding
the importance of certain physiographic characteristics,
notably mean surface slope and the fraction of forest.

Consequently, current macro- and global-scale base-
flow parameterizations, such as those used in land sur-
face schemes (a crucial component of global circulation
models) and global hydrological models, are often far
from ideal and vary widely (cf. Duan et al., 2001). Some
use globally fixed parameters, such as the Community
Land Model (CLM; Oleson et al., 2010), Noah-MP (Niu
et al., 2011), and Mac-PDM (Gosling and Arnell, 2011).
Others use nearest-neighbour interpolation of calibrated
parameters, such as the Variable Infiltration Capacity
(VIC) model (Liang et al., 1994; Nijssen et al., 2001) and
WASMOD-M (Widén-Nilsson et al., 2007). Yet others
rely on expert opinion and hydrologic interpretation of
global geological data sets, such as WaterGAP (Döll and
Fiedler, 2008) and PCR-GLOBWB (Bierkens and van
Beek, 2009). Recently, the wider availability of Q and
physiographic data, thanks in particular to (on-going)
efforts by the U.S. Geological Survey (USGS) and the
Global Runoff Data Centre (GRDC; Koblenz, Germany;
http://grdc.bafg.de) and advances in computing and
remote sensing technology, has created the possibility to
explore the estimation of BFI and k at larger scales. Ex-
amples include Schneider et al. (2007) and Santhi et al.
(2008), who investigated the regionalization of BFI for
Europe and the conterminous USA, respectively, and
Peña-Arancibia et al. (2010), who investigated the re-
gionalization of k across the tropics.

The current study uses a large set of 3520 catchments
that covers all continents and a wide range of physio-
graphic conditions, thereby allowing the construction of
reliable, more widely applicable models to estimate BFI
and k. To our knowledge, the current study is the first
attempt to estimate these baseflow characteristics from
physiographic data at such global scale using such a large
Q data set. Specific objectives are to: (1) analyze the
relationships between catchment physiographic charac-
teristics and the selected baseflow characteristics; (2)
construct models to estimate the baseflow characteris-
tics from physiographic characteristics and assess their
generalization ability; and (3) investigate the feasibility
of global-scale estimation of the baseflow characteristics.

5.2 Data

5.2.1 Observed streamflow

Daily observed Q data were derived from three sources.
First, Q data for 1862 USA stations that were part of
the Model Parameter Estimation Experiment (MOPEX;
Duan et al., 2006) were downloaded from the USGS Na-
tional Water Information System (http://waterdata.

usgs.gov) and the associated catchment boundaries
from the MOPEX webserver (ftp://hydrology.nws.
noaa.gov/pub/gcip/mopex/). Second, Q data for 4047
stations from the GRDC were considered. Correspond-
ing catchment boundary data were provided by the
GRDC. Third and finally, Q data and associated catch-
ment boundaries for 321 Australian stations part of a
database compiled by Peel et al. (2000) were used. To-
gether, this resulted in an initial data set comprising
6230 Q gauging stations.

For catchments to be included here three requirements
needed to be satisfied. First, due to the importance
of channel routing in large catchments (e.g., McGlynn
et al., 2004) the catchment area had to be < 10 000 km2

(cf. Peña-Arancibia et al., 2010). Second, to reduce an-
thropogenic influences, < 2 % of the catchment was al-
lowed to be urban (using the “artificial areas” class of
the GlobCover v2 map; Bontemps et al., 2011) or sub-
ject to irrigation (using the Global Irrigated Area Map;
http://www.iwmigiam.org). Third and finally, to en-
sure reliable estimates of the baseflow characteristics the
Q record length had to be > 10 yr (not necessarily con-
secutive). This resulted in a set of 3520 Q gauging sta-
tions, the locations of which are shown in Fig. 5.1. The
10th percentile, median, and 90th percentile values of the
Q record lengths were 21 yr, 50 yr, and 86 yr, respec-
tively. The 10th percentile, median, and 90th percentile
values of the catchment areas were 129 km2, 901 km2,
and 5062 km2, respectively. All Q data were converted
to mm d−1 using the catchment areas.

5.2.2 Physiographic characteristics

Table 5.1 lists the physiographic characteristics used as
predictors to model BFI and k. Predictor selection was
inclusive and guided by previous regionalization studies,
expert knowledge, and data availability. Among the se-
lected physiographic characteristics, nine were related to
climate, two to topography, three to land cover, and four
to soils—bringing the total number of predictors to 18.
For the catchment-scale estimation of the baseflow char-
acteristics the full-resolution data were used. However,
for the computation of global maps, data with a resolu-
tion < 0.25◦ were re-sampled to 0.25◦ using averaging,
whereas data with a resolution > 0.25◦ were re-sampled
to 0.25◦ using bilinear interpolation.

A number of other physiographic characteristics were
considered, but not included in the analysis. The topo-
graphic wetness index (TWI; Beven and Kirkby, 1979)
was not used because a global high-resolution TWI data
set is not (yet) available. Drainage density (total length
of streams per unit catchment area) was not used ei-
ther, due to the lack of globally consistent river-network
data (cf. Benstead and Leigh, 2012). Permafrost extent
(Brown et al., 1997) was tested but not used as its inclu-
sion did not result in better model performance and since
its spatial patterns closely matched those of SNOW (cf.
Table 5.1). Although four other global data sets pro-
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Figure 5.1: Locations of the catchments used here. Each data point represents a catchment centroid (n = 3520).

viding information on soils or geology were considered
(Dürr et al., 2005; Batjes, 2006; Gleeson et al., 2011;
Hartmann and Moosdorf, 2012), the Harmonized World
Soil Database (HWSD; FAO/IIASA, 2012) was selected
as it has a high resolution of 1 km, is based on a compre-
hensive collection of soil data, and because strong links
have been found between the sand content of the soil
(SAND) and BFI (Boorman et al., 1995; Santhi et al.,
2008). To improve the HWSD data set it was supple-
mented with SAND data for the USA as derived from
the STATSGO (Wolock et al., 2004) data set, with the
silt and clay contents changed accordingly.

5.3 Methodology

5.3.1 Computation of BFI and k

Single values of BFI and k were computed from the Q
record of each catchment following Van Dijk (2010). A
linear reservoir model was assumed as this is generally
considered to be a good approximation (e.g., Chapman,
1999; Fenicia et al., 2006; Van Dijk, 2010). Because Q
may still contain quickflow following rainfall events the
first five days after the last day with an increasing Q
(compared to the previous day) were excluded in the
compution of k. See Van Dijk (2010) for further de-
tails. It is pertinent to note that the choice of tech-
niques to compute k and BFI may affect the results (cf.
Nathan and McMahon, 1990; Vogel and Kroll, 1996; Bul-
lock et al., 1997; Eckhardt, 2008). The distribution of
the derived k values for the different catchments had a
strong negative negative skew that might confound the
modeling exercise. Hence, to make the data better con-
form to a normal distribution the following logarithmic
transformation was applied:

ktrans = −ln (1− k) , (5.1)

where ln refers to the natural logarithm and ktrans [-] is
the transformed k. The inverse of this transformation is
given by:

k = 1− e−ktrans . (5.2)

The obtained k was subsequently used to separate the
Q record into baseflow and quickflow using a forward-
and backward-recursive digital filter (Van Dijk, 2010).
Fig. 5.2 gives an example of baseflow computed in this
way. The BFI was calculated as the ratio of long-term
mean baseflow to total Q, ranging from 0 to 1. Since the
distribution of the derived BFI values for the different
catchments showed a weak negative skew the following
power-transformation was applied:

BFItrans = BFI2, (5.3)

where BFItrans [-] is the transformed BFI. The inverse of
this transformation is given by:

BFI =
√

BFItrans. (5.4)

The remaining three methodological sub-headers reflect
the original three objectives of this study, and are used
to structure the subsequent Results and Discussion sec-
tions.

5.3.2 Physiographic controls of BFI and
k

Using regression analysis the strength and shape of the
relationships between catchment physiographic charac-
teristics and the transformed baseflow characteristics
(BFItrans and ktrans) were evaluated. Linear, exponen-
tial, logarithmic, and power functions were fitted by
least-squares and the function with the highest coeffi-
cient of determination (R2) was reported. Significance
levels (or p values) were not calculated as these may be
misleading (Nicholls, 2001), particularly when using such
large data sets (Royall, 1986; Johnson, 1999).
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Table 5.1: The physiographic characteristics used as predictors of the baseflow index (BFI) and recession constant (k).

Type Predictor(s) Description Source and calculationa Resolution

Climate AI [-] Aridity index AI = P/PET 0.5◦

AIsi [-] Aridity index seasonality AIsi = |AIsum −AIwin| /AI 0.5◦

P [mm yr−1] Mean annual precipitation WorldClim (Hijmans et al., 2005) ∼1 km
Psi [-] Precipitation seasonality Psi = |Psum − Pwin| /P ∼1 km
PET [mm yr−1] Mean annual potential

evaporation
Penman-Monteith (Fisher et al., 2011) 0.5◦

PETsi [-] Potential evaporation seasonality PETsi = |PETsum − PETwin| /PET 0.5◦

TA [K] Mean annual air temperature WorldClim (Hijmans et al., 2005) ∼1 km
TAsi [-] Air temperature seasonality Tsi = |Tsum − Twin| /T ∼1 km
SNOW [mm] Mean snow-water equivalent depth GlobSnow L3A prototype with mountains

included v1 (mean of 2008–2010; Luojus
et al., 2010) for latitudes > 35◦N and
AMSR-E/Aqua L3 v10 (mean of 2003–2011;
Chang and Rango, 2000) for latitudes
≤ 35◦N

∼25 km

Topography ELEV [m asl] Mean elevation For the catchment-scale analysis CGIAR-CSI
SRTM v4.1 data were used, whereas for the
global-scale analysis IIASA-LUS data
(Fischer et al., 2008) were used

∼90 m, ∼0.08◦

SLO [◦] Mean surface slope Idem ∼90 m, ∼0.08◦

Land cover fW [-] Fraction of open water GlobCover v2 (Bontemps et al., 2011) ∼300 m
fTC [-] Fraction of forest MODIS MOD44B collection 4 v3 (Hansen

et al., 2003)
∼250 m

NDVI [-] Mean Normalized Difference
Vegetation Index (NDVI; Tucker,
1979)

MODIS MOD13C2 collection 5 (Huete
et al., 2002), mean of 2001–2012

0.05◦

Soils GRAV [%] Mean gravel content HWSD v2.0 (FAO/IIASA, 2012), mean of
topsoil and subsoil values

∼1 km

SAND [%] Mean sand content HWSD v2.0 (FAO/IIASA, 2012), mean of
topsoil and subsoil values, supplemented with
STATSGO (Wolock et al., 2004) for the USA

∼1 km

SILT [%] Mean silt content HWSD v2.0 (FAO/IIASA, 2012), mean of
topsoil and subsoil values

∼1 km

CLAY [%] Mean clay content Idem ∼1 km

a The “sum” and “win” subscripts denote Northern Hemisphere ‘summer’ (April–September) and ‘winter’ (October–March) clima-
tologic means, respectively.

5.3.3 Catchment-scale estimation of BFI
and k

Artificial Neural Networks (ANNs) are flexible, non-
paracharacteristic tools able to model complex non-
linear relationships between inputs and outputs (Bishop,
1995). ANNs have been used succesfully in many fields
of science, including hydrology (ASCE, 2000a,b; Govin-
daraju and Rao, 2000; Maier and Dandy, 2000). Here,
feed-forward ANNs based on the multi-layer perceptron
(MLP; Bishop, 1995) with one hidden layer were used
to estimate BFItrans and ktrans from the physiographic
data. The inputs (i.e., catchment physiographic data)
and outputs (i.e., BFItrans and ktrans) were standardized
using the means and standard deviations of the catch-
ment values. The MLP models were trained using the
Levenberg-Marquardt (LM) algorithm (Levenberg, 1944;
Marquardt, 1963) in combination with the mean-squared
error performance function. The LM algorithm is con-
sidered to be one of the most efficient learning algorithms
(Hagan, 1994).

The 10-fold cross-validation procedure (Shao, 1993)
was used to estimate the generalization ability of the

established MLP models. This procedure randomly par-
titions the original set of 3520 catchments into ten sub-
samples, of which each comprises 10 % of the catchments
(n = 312). For ten iterations, each time a different sub-
sample of catchments was used to independently test the
model’s performance, the other 90 % were randomly par-
titioned further into a training subset consisting of 75 %
of the catchments (n = 2337) and a validation subset
consisting of 15 % of the catchments (n = 467). For
each iteration, the MLP model was trained on the train-
ing subset, while to prevent overfitting, the training pro-
cess was stopped once the error for the validation sub-
set started to increase (Sarle, 1995; Bishop, 1995). The
generalization ability of the MLP models was derived by
averaging R2 and root mean square error (RMSE) statis-
tics computed for each cross-validation iteration from the
testing subset of catchments. The optimal number of
neurons in the hidden layer was determined by trial and
error, based on R2 and RMSE values obtained for the
testing subsets. The number of neurons in the hidden
layer was set at 30, as no further performance improve-
ment was gained beyond 30 neurons. Using such a high
number of neurons in the hidden layer avoids the con-
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Figure 5.2: Computed baseflow and quickflow at USGS gauge no. 14307700 (Jackson Creek near Tiller, OR, USA; catchment area 394
km2). The computed quickflow is the observed Q minus the computed baseflow. BFI = 0.66 and k = 0.94 d−1 for this catchment
based on the complete record from 1955–1986.

vergence to local minima (Tetko et al., 1995). As a last
step, the output was de-standardized using the mean and
standard deviation of the catchment values.

5.3.4 Global maps of BFI and k

Global physiographic data were used as input to the es-
tablished MLP models, producing ten maps of BFItrans

and ktrans (0.25◦ resolution). These maps were combined
into single maps of BFItrans and ktrans by calculating
the per-pixel median of the ten BFItrans or ktrans val-
ues, respectively. Next, to correct for the statistical phe-
nomenon of regression toward the mean (Galton, 1886;
Bland and Altman, 1994), the regression equations de-
scribing the catchment-scale relationships between me-
dian estimated vs. observed values of BFI and k were
applied to the maps of BFItrans and ktrans, respectively.
The maps were subsequently transformed back to BFI
and k using Eqs. 5.2 and 5.4, respectively. The estima-
tion uncertainty was quantified by calculating the per-
pixel standard deviation of the ten BFItrans and ktrans

values. Pixels attributed as ice (using the WWF ter-
restrial biomes map v2; Olson et al., 2001; see Fig. 5.3)
or open water (using GlobCover v2; Bontemps et al.,
2011) were excluded. To better understand the spatial
patterns of the global estimates, for each 0.25◦ latitude
band the 90th percentile, median, and 10th percentile of
the global BFI and k estimates were computed. Addi-
tionally, for each WWF terrestrial biome the medians of
the global BFI and k estimates were computed.

5.4 Results

5.4.1 Physiographic controls of BFI and
k

Figs. 5.4 and 5.5 show scatterplots of catchment-mean
values of the 18 selected physiographic characteristics
vs. observed values of the transformed baseflow charac-
teristics (BFItrans and ktrans, respectively). The relation-

ships were all rather weak (R2 ≤ 0.21) and often char-
acterized by high degrees of non-linearity and/or het-
eroscedasticity (i.e., uneven variability). Among the nine
climate predictors, AIsi, PET, PETsi, TA, and SNOW
were moderately well related to BFItrans (Figs. 5.4b,
5.4e, 5.4f, 5.4g, and 5.4i, respectively), whereas AI, AIsi,
and PET were moderately well related to ktrans (Fig.
5.5a, 5.5b, and 5.5e, respectively). The relationships be-
tween ELEV or SLO and BFItrans or ktrans were positive
(Figs. 5.4j, 5.5j, 5.5k, and 5.5k, respectively). Among
the three land-cover indices, fTC and NDVI were re-
lated to neither BFItrans nor ktrans (Figs. 5.4m, 5.5m,
5.4n, and 5.5n, respectively), whereas fW was positively
related to BFItrans (Fig. 5.4l). However, the relationship
between fW and BFItrans was highly heteroscedastic,
demonstrating high variability at low fW and low vari-
ability at high fW. Among the four soil indices, mod-
erate (positive) relationships were obtained with SAND
(Figs. 5.4p and 5.5p).

5.4.2 Catchment-scale estimation of BFI
and k

Table 5.2 shows mean R2 and RMSE values (mean of ten
cross-validation iterations) obtained by the MLP models
for the training and testing subsets of catchments. The
mean training and testing R2 values for BFItrans are 0.73
and 0.65, respectively, whereas the corresponding values
for ktrans are somewhat poorer at 0.62 and 0.52 (Table
5.2). Fig. 5.6 shows scatterplots of estimated vs. ob-
served values of BFItrans and ktrans, including the linear
regression line. The estimated values are the median
estimates of the ten MLP models (one for each cross-
validation iteration). The associated R2 values are 0.82
and 0.73 for the respective baseflow characteristics (Fig.
5.6), and thus are substantially higher than the mean
training R2 values (Table 5.2). The models tend to over-
estimate (underestimate) low (high) values of BFItrans

and ktrans due to the statistical phenomenon of regres-
sion toward the mean (Galton, 1886; Bland and Altman,
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1. Tropical & subtropical moist broadleaf forests

2. Tropical & subtropical dry broadleaf forests

3. Tropical & subtropical coniferous forests

4. Temperate broadleaf & mixed forests

5. Temperate conifer forests

6. Boreal forests/taiga

7. Tropical & subtropical grasslands, savannas & shrublands

8. Temperate grasslands, savannas & shrublands

9. Flooded grasslands & savannas

10. Montane grasslands & shrublands

11. Tundra

12. Mediterranean forests, woodlands & scrub

13. Deserts & xeric shrublands

14. Mangroves

98. Lakes

99. Rock and ice

Figure 5.3: The WWF terrestrial biomes map (Olson et al., 2001).

Table 5.2: Mean R2 and RMSE statistics obtained for the training
and testing subsets of catchments.

Baseflow Mean R2 Mean RMSE [-]

characteristic Training Testing Training Testing

BFItrans 0.73 0.65 0.12 0.13

ktrans 0.62 0.52 0.36 0.41

1994).

5.4.3 Global maps of BFI and k

Figs. 5.7a and 5.8a present global maps of BFI and k,
respectively. These were produced in turn, using global
physiographic data as input to the ten trained MLP
models (one for each cross-validation iteration), calcu-
lating the per-pixel median and applying the regression
equations shown in Fig. 5.6 to correct for the regression
toward the mean phenomenon, and back-transforming
the result. Higher BFI and k are found in the tropics, in

the tundra-taiga zone, and for mountain ranges (e.g., the
Chilean Andes, the Rocky Mts, and the Himalayas). To
facilitate the comparison of spatial patterns, Figs. 5.7b
and 5.8b show the observed values. The BFI and k es-
timates appear to be relatively unbiased and the maps
generally agree well with the observations (Figs. 5.7 and
5.8).

Fig. 5.9 shows for each 0.25◦ latitude band the median
and degree of dispersion of the global BFI and k esti-
mates. High values of the baseflow signatures are gener-
ally found north of ∼40◦N and between ∼15◦S and ∼7◦N
(Fig. 5.9). There is a markedly lower spread in k values
north of ∼60◦N (Fig. 5.9). Table 5.3 lists for each base-
flow characteristic and terrestrial biome the median of
the global maps. The variability in median BFI between
biomes is relatively small, with values ranging from 0.53
(deserts & xeric shrublands) to 0.78 (temperate conifer
forests). Values for k range from 0.74 (deserts & xeric
shrublands) to 0.95 (boreal forests/taiga, tundra, and
rock and ice).

Fig. 5.10 shows for the transformed baseflow char-
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Table 5.3: Median estimated BFI and k for the WWF terrestrial biomes.

Biomea BFI [-] k [d−1]

1. Tropical & subtropical moist broadleaf forests 0.72 0.94

2. Tropical & subtropical dry broadleaf forests 0.59 0.89

3. Tropical & subtropical coniferous forests 0.66 0.94

4. Temperate broadleaf & mixed forests 0.74 0.93

5. Temperate conifer forests 0.78 0.94

6. Boreal forests/taiga 0.75 0.95

7. Tropical & subtropical grasslands, savannas & shrublands 0.67 0.88

8. Temperate grasslands, savannas & shrublands 0.67 0.87

9. Flooded grasslands & savannas 0.70 0.90

10. Montane grasslands & shrublands 0.69 0.90

11. Tundra 0.71 0.95

12. Mediterranean forests, woodlands & scrub 0.60 0.86

13. Deserts & xeric shrublands 0.53 0.74

99. Rock and ice 0.74 0.95

a Fig. 5.3 shows the biome map. Only biomes with > 60 pixels of 0.25◦ resolution
with a value are shown here.

acteristics (BFItrans and ktrans) the uncertainty of the
global estimates, as computed from the estimation
spread of the ten trained MLP models. For both base-
flow characteristics a lower uncertainty is found in North
America, Europe, and southeastern Australia, whereas
greater uncertainty is associated with arid, semi-arid,
and Arctic regions (Fig. 5.10).

5.5 Discussion

5.5.1 Physiographic controls of BFI and
k

Table 5.4 provides an overview of previous studies of
(non-transformed) BFI or k regionalization. Although
most of these studies were regional in nature, three had
a continental scope (Gustard and Irving, 1994; Schnei-
der et al., 2007; Santhi et al., 2008), and one cov-
ered the entire tropics (Peña-Arancibia et al., 2010).
The most commonly used climate-related indices were
mean annual precipitation (P ; Lacey and Grayson, 1998;
Haberlandt et al., 2001; Mazvimavi et al., 2005; Lon-
gobardi and Villani, 2008; Peña-Arancibia et al., 2010;
Krakauer and Temimi, 2011), aridity index (AI; Lacey
and Grayson, 1998; Mwakalila et al., 2002; Van Dijk,
2010; Peña-Arancibia et al., 2010), and mean annual po-
tential evaporation (PET; Lacey and Grayson, 1998; Van
Dijk, 2010). The studies generally reported a positive re-
lationship of BFI and k with AI, a negative relationship
with PET, and an inconsistent relationship with P . This
is all in agreement with the present results (Figs. 5.4a,
5.5a, 5.4c, 5.5c, 5.4e, and 5.5e, respectively). However,
AI was only weakly related to BFItrans and the relation-
ship between AI and ktrans was characterized by a high
degree of heteroscedasticity (Figs. 5.4a and 5.5a, respec-
tively). The present results therefore suggest that catch-
ments with a high evaporative demand dry out faster af-

ter rainfall events, resulting in flows dominated by short-
duration events (i.e., low BFI and k).

The relationships obtained here between catchment-
mean surface slope (SLO) and BFItrans or ktrans were
positive (Figs. 5.4k and 5.5k, respectively), which is
in agreement with several other regionalization stud-
ies (Lacey and Grayson, 1998; Longobardi and Vil-
lani, 2008; Peña-Arancibia et al., 2010; Van Dijk, 2010;
Krakauer and Temimi, 2011) and a sensitivity experi-
ment using TOPMODEL (Wolock et al., 1989). How-
ever, the relationships were rather weak and somewhat
heteroscedastic (Figs. 5.4k and 5.5k), indicating that to-
pography is not a major control of baseflow, particularly
in catchments with gentle slopes. Consequently, the use
of TOPMODEL-based runoff parameterizations in such
catchments may be inappropriate (cf. Beven, 1997; Li
et al., 2011). Conversely, several other regionalization
studies found negative relationships between SLO and
BFI (Haberlandt et al., 2001; Mazvimavi et al., 2005)
or k (Zecharias and Brutsaert, 1988; Post and Jakeman,
1996; Brandes et al., 2005), although these studies used
only a limited number of catchments (≤ 52). Addition-
ally, the positive relationships found here (and by others)
seems to contradict general drainage theory, which pre-
dicts a negative relationship between SLO and BFI or k,
based on the premise that more steeply sloping aquifers
drain faster (Brutsaert and Nieber, 1977; Zecharias and
Brutsaert, 1988; Vogel and Kroll, 1992). There are two
potential explanations for this discrepancy. The first is
that SLO may be a poor proxy for the aquifer flow gradi-
ent. However, this explanation fails to clarify why a pos-
tive relationship was obtained. The second is that SLO
(which is based on relatively high-resolution SRTM data,
cf. Table 5.1) acts as a surrogate for hydrologic character-
istics of soils and geology in the absence of more detailed
data on substrates. Topography is one of the primary in-
fluences on pedogenesis (Price, 2011), with soils forming
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on steep slopes often being more permeable than their
counterparts on gentle slopes (e.g., Ciolkosz et al., 1989;
Janeau et al., 2003; Soulsby and Tetzlaff, 2008). Since
permeable soils favor higher BFI and k relative to less
permeable soils (Boorman et al., 1995) this could explain
the positive relationships obtained between SLO and the
baseflow characteristics. A counter argument could be
that bedrock usually occurs at more shallow depths on
steep slopes than on gentler slopes, although bedrock
is not necessarily impermeable (Davis, 1969; Tromp-van
Meerveld et al., 2007) and can contribute a considerable
portion of total Q (Uchida et al., 2003).

Small-scale experimental studies demonstrate a clear
relationship between the fraction of forest (fTC) and
annual water yield (Bosch and Hewlett, 1982; Brown
et al., 2005; Jackson et al., 2005), but this relationship
does not always hold at the meso- to large-catchment-
scale (e.g., Wilk et al., 2001; Zhou et al., 2010; Van Dijk
et al., 2012; Peña-Arancibia et al., 2012). Similarly, no
evidence of catchment-scale relationships between fTC
and the transformed baseflow characteristics was found
here (Figs. 5.4m and 5.5m) nor in several other BFI
regionalization studies (Demuth and Hagemann, 1994;
Mazvimavi et al., 2005; Longobardi and Villani, 2008).
Although other regionalization studies did find relation-
ships between fTC and BFI (Lacey and Grayson, 1998)
or k (Brandes et al., 2005; Peña-Arancibia et al., 2010;
Krakauer and Temimi, 2011), the direction and strength
of the relationships varied (cf. Price, 2011). By contrast,
our results between the fraction of open water (fW) and
BFItrans or ktrans were positive, albeit somewhat het-
eroscedastic (Figs. 5.4l and 5.5l, respectively). This sug-
gests that when large areas of a catchment are occu-
pied by lakes, wetlands, or reservoirs (i.e., fW > 0.08)
the flow is delayed (i.e., high BFI and k). Similar re-
sults were obtained in BFI regionalization studies for the
Great Lakes region of North America (Neff et al., 2005)
and Indiana, USA (Ahiablame et al., 2013).

Soils and geology are undoubtedly two of the domi-
nant controls of baseflow (Farvolden, 1963; Davis, 1969;
Tague and Grant, 2004) as confirmed by the fact that 16
of the 20 considered regionalization studies incorporated
one, or more, indices related to soils or geology into their
models (Table 5.4). Here, four indices related to the soil
were used. Moderate (positive) relationships with the
mean sand content of the soil (SAND) were found (Figs.
5.4p and 5.5p), in agreement with BFI regionalization
studies for the conterminous USA (Santhi et al., 2008)
and the UK (Boorman et al., 1995). The weaker rela-
tionship found here (Fig. 5.4p) is most likely due to the
relatively poor quality of the global HWSD data set com-
pared to the more regional soil data sets used in the two
previously mentioned studies.

5.5.2 Catchment-scale estimation of BFI
and k

Most regionalization studies used multi-variate linear re-
gression (Table 5.4) and non-transformed values of the
baseflow characteristics (BFI and k). However, the neg-
ative skew of the BFI and k distributions found here sug-
gests the need for transformation of the data to achieve
greater normality. Additionally, the highly non-linear re-
lationships between the predictors and the (transformed)
baseflow characteristics obtained here (Figs. 5.4 and 5.5;
cf. Van Dijk, 2010; Peña-Arancibia et al., 2010) sug-
gest the usefulness of ANNs. Many regionalization stud-
ies have used a relatively small number of catchments
(< 100; Table 5.4), which may have led to less reli-
able and/or overfitted models. In general, studies with
< 100 catchments obtained higher training R2 values
than studies based on a larger number of catchments
(≥ 100; Table 5.4). For BFItrans, the training R2 value
obtained here (0.73; Table 5.2) falls in the upper range
of values reported for other studies with ≥ 100 catch-
ments (0.34–0.79; Table 5.4). For ktrans, the training R2

value obtained here (0.62; Table 5.2) is much higher than
the corresponding values reported for other studies with
≥ 100 catchments (0.25–0.49; Table 5.4). However, it
is pertinent to note that two of these studies (Van Dijk,
2010; Peña-Arancibia et al., 2010) incorporated only one
(climate-related) predictor in their model, whereas bet-
ter results might have been achieved using multiple pre-
dictors.

Assessing a model’s performance on an independent
data set (i.e., to provide an estimate of generalization)
is a crucial aspect of model development. Here, mean
testing R2 values of 0.65 and 0.52 were obtained for
BFItrans and ktrans, respectively (Table 5.2). We consider
these results to be acceptable given the large geographic
spread and the wide range of geology, soils, topogra-
phy, climate, and land use covered by the catchments.
Only three other (BFI) regionalization studies conducted
a generalization assessment of their established models
(Haberlandt et al., 2001; Schneider et al., 2007; Bloom-
field et al., 2009). We strongly urge all future researchers
to explicitely report generalization assessment statistics
in their papers. Of these three studies, only one reported
the associated statistical measures (Haberlandt et al.,
2001). Haberlandt et al. (2001) used multi-variate linear
regression, ordinary kriging, and external drift kriging to
estimate BFI from ten physiographic characteristics for
25 catchments located in the German part of the Elbe
River Basin. Based on a leave-one-out cross-validation
they obtained RMSE values of 0.09, 0.11, and 0.08 for
the respective approaches. Their RMSE values are com-
parable to the mean RMSE value of 0.11 computed here
from back-transformed observed and estimated BFI for
the testing subsets (noting that the value of 0.13 in Table
5.2 was derived from transformed BFI values).

The performance statistics obtained for BFItrans were
better than those for ktrans (cf. Table 5.2 and Fig. 5.6), in
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agreement with previous studies using non-transformed
values (Table 5.4). The better performance of BFI may
be attributable to several factors. First, k has been found
to vary somewhat seasonally in response to changes in
actual evaporation (Czikowsky and Fitzjarrald, 2004).
Moreover, if the baseflow recession of a catchment is
non-linear, the assumption of a linear reservoir to de-
rive k as used here will lead to different estimates of k
depending on the flow rate (Wittenberg, 1999; Krakauer
and Temimi, 2011). Additionally, k is calculated from
low-flow periods in the Q record that are subject to rela-
tively lower instrument precision than intermediate flows
(Carter, 1963) and are affected by rating-curve uncer-
tainty (Tomkins, 2013). Finally, k suffers from a greater
sampling error than BFI as it is computed from only
parts of the overall Q record.

The R2 values of the scatterplots exceed the mean
trainingR2 values (cf. Fig. 5.6 and Table 5.2) because the
estimated values in the scatterplots represent the mean
of the ten MLP models (one for each cross-validation
iteration). Ensemble modeling (i.e., using the outputs
from multiple models or from different realizations of the
same model) is widely used in atmospheric and climate
sciences and is known to typically improve predictive ac-
curacy (e.g., Tebaldi and Knutti, 2007; Wandishin et al.,
2001). Additionally, several studies have reported that
using ensembles of neural networks improves the accu-
racy compared to using single neural networks (Hansen
and Salamon, 1990; Tetko et al., 1995).

5.5.3 Global maps of BFI and k

To the best of our knowledge our study is the first at-
tempt to estimate BFI and k globally. Santhi et al.
(2008) produced a BFI map for the conterminous USA
by interpolating the BFI values of ∼8600 catchments.
The BFI map of Santhi et al. (2008) and our newly de-
rived map (Fig. 5.7a) exhibit very similar spatial pat-
terns, although the latter contains considerably more de-
tail. Neff et al. (2005) presented a BFI map for the Great
Lakes region of North America based on exponential re-
lationships with the fraction of open water (fW) and a
geological index. Comparing the BFI map of Neff et al.
(2005) with our map (Fig. 5.7a) reveals that the mean
BFI for this region is similar at ∼0.75. Bullock et al.
(1997) produced a BFI map for Southern Africa by as-
signing the BFI values computed from the Q records
of ∼650 gauging stations to the associated catchments.
Some of the catchments used by Bullock et al. (1997)
were rather large (8 % of the catchments were > 10 000
km2 and 2 % > 100 000 km2), which may have led to
inflated BFI values due to channel routing effects. Nev-
ertheless, the BFI map of Bullock et al. (1997) and the
corresponding part of our map (Fig. 5.7a) agree well in
terms of spatial patterns—both maps showed markedly
higher BFI values north of ∼15◦S. Lee et al. (2006) pro-
duced a BFI map for Taiwan by interpolation of BFI
values computed from the Q records of 174 gauging sta-

tions. Again, our map and that of Lee et al. (2006)
showed very similar spatial patterns. Similarly, the BFI
maps of Haberlandt et al. (2001) for the German part
of the Elbe River Basin and our map agreed well; both
maps give a mean BFI of ∼0.75 and place the highest
BFI values in the central part of the Elbe.

Peña-Arancibia et al. (2010) produced a k map for the
entire tropics extending between 35◦S and 30◦N based on
an exponential relationship with long-term mean P . The
most notable difference between the current map (Fig.
5.8a) and the map of Peña-Arancibia et al. (2010) is that
the latter only shows high k values (i.e., k > 0.95) near
the equator, whereas our newly produced map indicates
such high k values between ∼15◦S and ∼7◦N (Fig. 5.9).
Visual inspection suggests that our current map (Fig.
5.8a) agrees slightly better with the observed values for
the catchments used by Peña-Arancibia et al. (2010) and
the observed values for the catchments used here (Fig.
5.8b).

The global maps of the estimation uncertainty for BFI
and k exhibit similar patterns (Fig. 5.10). The generally
greater uncertainty in arid, semi-arid, and Arctic regions
(Fig. 5.10) is due to application of the MLP models out-
side the physiographic domain of the catchment data.
Additional efforts are recommended to validate and/or
improve the present results for these regions. In light of
this, the declining number of Q gauging stations in op-
eration around the globe is cause for concern (Stokstad,
1999; Shiklomanov et al., 2002; Fekete and Vörösmarty,
2007).

The global maps of BFI and k produced here are likely
useful for a wide range of large-scale hydrological appli-
cations, including the diagnosis and parameterization of
land surface schemes and global hydrological models, wa-
ter resource assessments, catchment classification, and
groundwater recharge estimation. However, some im-
portant characteristics and limitations should be noted.
First, the maps reflect flows under natural, unregulated
conditions. Second, in cold regions the main source of
baseflow is a combination of snow and glacier melt and
not groundwater. Third, the maps are not representative
of flows in catchments > 10 000 km2 due to the increas-
ing importance of channel routing effects at larger scales.
This means that the estimated BFI and k should be used
for Q from contributing catchments and not Q routed
through larger basins. Finally, although the maps have
a resolution of 0.25◦, their effective resolution is lower
due to the lower resolution of some of the original input
data (cf. Table 5.1).

5.6 Conclusion

This study is the first attempt to estimate two important
baseflow characteristics (BFI and k) globally. A highly
heterogeneous set of 3520 catchments was used to con-
struct widely applicable models relating physiographic
characteristics to BFI and k. The main findings are:
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1. Since the BFI and k distributions showed negative
skewness, a data transformation was needed to bet-
ter approximate a normal distribution, required to
avoid bias in the estimates. The relationships be-
tween catchment physiographic characteristics and
the transformed baseflow characteristics (BFItrans

and ktrans, respectively) were often highly non-linear
and heteroscedastic. Among the catchment phys-
iographic characteristics pertaining to climate, the
aridity index seasonality (AIsi), mean annual poten-
tial evaporation (PET), PET seasonality (PETsi),
mean annual air temperature (TA), and mean snow-
water equivalent depth (SNOW) were best related
to BFItrans, whereas the aridity index (AI), AIsi,
and PET were best related to ktrans. The posi-
tive relationships found between mean surface slope
(SLO) and BFItrans or ktrans seem to contradict clas-
sical drainage theory and may represent a spuri-
ous relationship due to underlying patterns in soil
hydrology and hydrogeology. Among the predic-
tors pertaining to land cover, the fraction of forest
(fTC) and the mean Normalized Difference Vegeta-
tion Index (NDVI) were related to neither BFItrans

nor ktrans, whereas the fraction of open water (fW)
showed moderate (positive) relationships with both
BFItrans and ktrans. Positive but weak relationships
were found between the mean sand content of the
soil (SAND) and both BFItrans and ktrans.

2. The non-linear relationships obtained between
catchment physiographic characteristics and
BFItrans or ktrans justified the use of artificial
neural networks to estimate BFItrans and ktrans. It
proved possible to satisfactorily estimate BFItrans

and ktrans from catchment physiographic data,
yielding training R2 values of 0.73 and 0.62, respec-
tively, although high (low) values of BFItrans and
ktrans were slightly underestimated (overestimated)
due to regression toward the mean. It was found
that averaging the estimates of the ten multi-layer
perceptron models (one for each cross-validation
iteration) resulted in more accurate estimates. The
results further show that artificial neural networks
can be considered a viable and perhaps better
alternative to the commonly used multi-variate
linear regression.

3. Global maps of BFI and k were obtained by us-
ing global physiographic data as input to the es-
tablished models and back-transforming the result.
The BFI and k values showed higher uncertainty
in comparatively data-poor arid, semi-arid, and
Arctic regions, and lower uncertainty in the more
data-rich North America, Europe, and southeast-
ern Australia. The global maps will prove use-
ful for a variety of large-scale hydrological applica-
tions, although further validation of the maps is rec-
ommended, particularly in poorly gauged and un-
gauged regions.
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Figure 5.4: Scatterplots of catchment-mean values of the physiographic characteristics (along the x-axis) vs. the observed BFItrans

(along the y-axis), including the best-fit regression line. Each data point represents a catchment (n = 3520). The x-axis range is from
the minimum to maximum value of the data (not shown). Table 5.1 lists descriptions of the predictor variables. Abbreviations referring
to the type of regression equation: EXP, exponential; LIN, linear; LOG, logarithmic; and POW, power.
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Figure 5.5: Scatterplots of catchment-mean values of the physiographic characteristics (along the x-axis) vs. the observed ktrans (along
the y-axis), including the best-fit regression line. Each data point represents a catchment (n = 3520). The x-axis range is from the
minimum to maximum value of the data (not shown). Table 5.1 lists descriptions of the predictor variables. Abbreviations referring to
the type of regression equation: EXP, exponential; LIN, linear; LOG, logarithmic; and POW, power.
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Figure 5.6: Scatterplots of estimated vs. observed values of (a) BFItrans and (b) ktrans, including the linear regression line. Each data
point represents a catchment (n = 3520). The estimated values are the median estimates of the ten multi-layer perceptron models used
(one for each cross-validation iteration). For each iteration the training, validation, and testing subsets were included. Scatterplots
using the non-transformed baseflow characteristics (BFI and k) were not made as being based on non-normally distributed data these
would result in non-robust regressions.
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(a) Median estimated BFI [-]

(b) Observed BFI [-]
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Figure 5.7: Global maps of (a) median estimated and (b) observed BFI. The estimated values in (a) are the back-transformed medians
of the ten cross-validation iterations. Each data point in (b) represents a catchment centroid (n = 3520).
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(a) Median estimated k [d−1]

(b) Observed k [d−1]
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Figure 5.8: Global maps of (a) median estimated and (b) observed k. The estimated values in (a) are the back-transformed medians
of the ten cross-validation iterations. Each data point in (b) represents a catchment centroid (n = 3520).
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Figure 5.9: The 90th percentile, median, and 10th percentile values for (a) BFI and BFItrans, and (b) k and ktrans for each 0.25◦

latitude band derived from the global maps. Values are plotted only if there are > 60 pixels of 0.25◦ resolution with a value within the
latitudinal band.
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Figure 5.10: Global maps of the uncertainty of (a) BFItrans and (b) ktrans. The data represent the per-pixel standard deviation of the
ten estimates (one for each cross-validation iteration).



Chapter 6

Calibration of global hydrological
models based on streamflow
characteristics

Abstract. Streamflow (Q) estimation in ungauged
catchments is perhaps the most fundamental challenge
faced by hydrologists. A promising approach to cali-
brate hydrological models in ungauged catchments is to
use estimated Q characteristics to identify acceptable
model parameter sets. This study is the first to test
this approach at the global scale using a large, heteroge-
neous catchment set. First, observed Q data from 3320
catchments were used to establish neural-network mod-
els to derive global maps of five selected Q character-
istics, each describing a different aspect of the hydro-
graph. All Q characteristics could be estimated satisfac-
torily, with mean training R2 values ranging from 0.62
to 0.86. Next, a conceptual rainfall-runoff model (HBV-
Light) was calibrated in a lumped fashion for 200 inde-
pendent catchments for 2003–2007 using values of the Q
characteristics derived from the newly produced maps.
A substantial improvement in the simulated Q character-
istics was noted, which, in turn, led to improvements in
most of the traditional Q performance measures as com-
puted from simulated and observed Q time series. The
comparison between the newly produced maps of the
respective Q characteristics and estimates derived from
two macro-scale hydrological models (Noah and PCR-
GLOBWB) suggests that the maps can be employed to
diagnose the runoff parameterization of the models. The
methodology further offers unique possibilities for the di-
agnosis and/or calibration of future macro-scale hydro-
logical models with high spatial resolution (down to 1
km).

6.1 Introduction

Understanding the spatio-temporal variability of stream-
flow (Q [mm d−1]) is important for water resources
management, for reliable drought and flood forecast-
ing, for hydropower and irrigation systems, for main-
taining aquatic habitats, and for sediment and contam-
inant transport (e.g., Brauman et al., 2007; Quintero
et al., 2009; Cyr et al., 2011). Calibration is a crucial

step in hydrological model application to obtain accu-
rate Q estimates for a catchment. It involves the iden-
tification of one or more acceptable model parameter
sets, typically by evaluating objective functions using
observed and modeled Q (e.g., Madsen, 2000). However,
observed Q data are unavailable for ungauged catch-
ments and hence over the majority of the Earth’s land
surface (Fekete and Vörösmarty, 2007), thus requiring
recourse to other approaches. One of the most com-
monly used approaches is the transfer of model param-
eters from gauged to ungauged catchments (Kim and
Kaluarachchi, 2008, and references therein), based on
geographic or physiographic proximity or using multi-
variate regression (He et al., 2011). However, this ap-
proach has had limited success due to the equifinality
problem, where different model parameter sets may lead
to similar results (Beven, 1993). An alternative approach
that has been gaining popularity in recent years is the
transfer of Q characteristics (e.g., Olden and Poff, 2003)
from gauged to ungauged catchments and to use these
to identify acceptable model parameter sets (Wagener
and Montanari, 2011). This approach has three advan-
tages: (1) it avoids the problem of equifinality; (2) it is
model-independent; and (3) Q characteristics are more
meaningful than model parameters. Several studies have
demonstrated the usefulness of this approach (Yadav
et al., 2007; Zhang et al., 2008a; Castiglioni et al., 2010;
Lombardi et al., 2012; Pinheiro and Naghettini, 2012),
although these studies had a regional scope and used a
relatively small number of catchments (≤ 30).

Macro-scale hydrological models (land surface schemes
and global hydrological models) are important tools de-
signed to simulate the water and energy balance of the
land surface at continental or global scales (Wood et al.,
1997). They have a physically-based representation of
the chief processes governing the water cycle and a
large number of a priori estimated parameters describ-
ing physical characteristics of the land surface. Such
macro-scale models are expected to provide reasonably
accurate Q estimates for ungauged regions owing to their

75
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physical basis. However, comparisons between hydro-
logical models and macro-scale models have revealed Q
estimates from macro-scale models to be relatively inac-
curate (Duan et al., 2006; Nasonova et al., 2009), largely
due to sub-par calibration (Beven, 1989; Duan et al.,
2001). Some macro-scale models are uncalibrated, such
as Noah-MP (Niu et al., 2011), Mac-PDM (Gosling and
Arnell, 2011), and the Community Land Model (CLM;
Oleson et al., 2010). Others have been crudely cali-
brated only, such as the Variable Infiltration Capacity
(VIC) model (Liang et al., 1994; Nijssen et al., 2001) and
WASMOD-M (Widén-Nilsson et al., 2007), which both
use nearest-neighbor interpolation of calibrated model
parameters, and WaterGAP (Döll and Fiedler, 2008),
which has been calibrated for gauged catchments based
on the runoff coefficient (the ratio of long-term Q to pre-
cipitation).

Recently, thanks to (on-going) Q data collection and
verification efforts by the Global Runoff Data Centre
(GRDC; Koblenz, Germany; http://grdc.bafg.de),
global maps of two important baseflow-related Q charac-
teristics were produced using neural-network (NN) mod-
els and global physiographic data (Beck et al., 2013b).
Such maps present a unique opportunity to calibrate
hydrological models for the entire land surface includ-
ing ungauged regions. The current paper tests whether
the global maps of five Q characteristics can be used
to calibrate a simple conceptual rainfall-runoff model
(HBV-Light). The employed methodology consists of
two stages. First, the respective maps are derived and
their global patterns are compared to estimates derived
from two commonly used macro-scale hydrological mod-
els. Second, the improvement in the simulated Q ob-
tained by the HBV-Light model is quantified and the
possibility of calibrating the two macro-scale models us-
ing the respective maps is explored.

6.2 Data

6.2.1 Observed streamflow

The observed daily Q data used here originate from three
sources. First, Q data from the 1862 Model Parameter
Estimation Experiment (MOPEX; Schaake et al., 2006)
catchments located in the USA were downloaded from
the US Geological Survey (USGS) National Water Infor-
mation System (http://waterdata.usgs.gov). Catch-
ment boundaries associated with the US Q data were ob-
tained from the MOPEX webserver (ftp://hydrology.
nws.noaa.gov/pub/gcip/mopex/US_Data/). Second, Q
data from 4047 stations around the world from the
GRDC streamflow dataset were considered. Third and
finally, Q and associated catchment boundary data for
321 Australian stations compiled by Peel et al. (2000)
were considered. Together this resulted in an initial
dataset comprising 6230 Q stations.

For a catchment to be included several requirements
had to be satisfied. First, to ensure that the used catch-

ments were relatively undisturbed, < 2 % of the catch-
ment area was allowed to be urban (using the “artificial
areas” class of the GlobCover v2 map; Bontemps et al.,
2011) or subject to irrigation (using the Global Irrigated
Area Map; http://www.iwmigiam.org). Second, catch-
ments needed to have an area of < 10 000 km2 to avoid
any effects of channel routing. This resulted in a dataset
comprising 3520 catchments. From this set, 200 catch-
ments with a temporal Q data coverage of > 90 % during
2003–2007 (i.e., the time period for which the HBV-Light
model was calibrated) were randomly selected and used
for the evaluation of the HBV-Light model configura-
tions, whereas the remaining 3320 catchments were em-
ployed to derive the global maps of the various Q charac-
teristics. Fig. 6.1 shows the locations of the catchments.
The Q data were converted to areal mean runoff in mm
d−1 using the corresponding catchment areas.

6.2.2 HBV-Light model inputs

Daily time series of precipitation (P [mm d−1]), air tem-
perature (T [◦C]), and net radiation (Rn [W m−2 d−1])
were calculated for the catchments to run the HBV-Light
model. For P the daily 0.25◦ gauge-based Climate Pre-
diction Center (CPC) Unified v1.0/RT dataset (1979–
2012; Xie et al., 2007; Chen et al., 2008) was used, and
for T the daily 1◦ satellite-based Atmospheric Infrared
Sounder (AIRS) AIRX3STD v005 dataset (2002–2011;
Olsen, 2007). Gaps in the T record were filled using
linear interpolation. Long-term means of CPC P were
linearly transformed to WorldClim data (Hijmans et al.,
2005), whereas long-term means of AIRS T were offset to
WorldClim data. The WorldClim data represent high-
resolution (1 km), elevation-corrected, long-term means.
For Rn the daily 1◦ satellite-based NASA/GEWEX
Surface Radiation Budget (SRB) v3.0/v3.1 dataset
(1983–2007; http://gewex-srb.larc.nasa.gov) was
used. All data were bilinearly interpolated to 0.25◦.
Catchment-mean time series of P , T , and Rn were cal-
culated for 2003–2007 (i.e., the common time period for
all datasets) for the 200 evaluation catchments.

6.2.3 Noah-based streamflow predic-
tions

Simulated Q data from the Noah land surface scheme
version 2.7.1 (Schaake et al., 1996; Ek et al., 2003) de-
veloped at the National Centers for Environmental Pre-
diction (NCEP) were obtained from the NASA God-
dard Earth Science (GES) Data and Information Ser-
vice Center (DISC; http://disc.sci.gsfc.nasa.gov/
hydrology/data-holdings). The model was driven by
the Global Land Data Assimilation System (GLDAS;
Rodell et al., 2004). The data have a 3-hourly temporal
and 0.25◦ spatial resolution and cover the period 2000–
present. Catchment-mean Q time series for the 200 eval-
uation catchments were computed for 2003–2007. Al-
though simulated Q data from three other land surface
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Figure 6.1: The locations of the catchments used here. Each data point represents a catchment centroid (n = 3520). Blue catchments
were used to produce the global maps (n = 3320), whereas red catchments were used to assess the HBV-Light model configurations
(n = 200).

schemes driven by GLDAS were available, these data
were less suitable due to their 1◦ spatial resolution.

6.2.4 PCR-GLOBWB-based streamflow
predictions

Simulated Q data from the PCRaster Global Water
Balance (PCR-GLOBWB) global hydrological model
(Bierkens and van Beek, 2009; Van Beek and Bierkens,
2009) developed at Utrecht University in the Nether-
lands were used. The model was driven by the ERA-
Interim reanalysis dataset (Dee et al., 2011). The data
have a daily temporal and 0.5◦ spatial resolution and
cover the period 2003–2010. Catchment-mean Q time
series for the 200 evaluation catchments were computed
for 2003–2007 as well.

6.3 Methodology

6.3.1 Computation of streamflow char-
acteristics

The five selectedQ characteristics were: (1) mean annual
runoff (MAR [mm yr−1]); (2) 1st percentile (probability
of non-exceedance) runoff (R1 [mm d−1]); (3) 99th per-
centile runoff (R99 [mm d−1]); (4) the baseflow index
(BFI [mm d−1]), defined as the ratio of long-term mean
baseflow to total Q; and (5) the baseflow recession con-
stant (k [d−1]), defined as the rate of baseflow decay.
The Q characteristics were chosen so as to represent the
most important aspects of the hydrograph. Only five
metrics were selected to allow the results of each to be
discussed in sufficient detail. All Q characteristics were
calculated from daily continuous Q time series (either

simulated or observed), with BFI and k computed fol-
lowing Van Dijk (2010) with the “window size” set at 5
days. To normalize the distributions of the respective Q
characteristics, values were transformed according to:

MARtrans = ln (MAR) ,

R1trans = R11/3,

R99trans = ln (R99) , (6.1)

BFItrans = BFI2, and

ktrans = −ln (1− k) ,

where the trans-subscript denotes the respective trans-
formed values of the Q characteristic under consideration
[-].

6.3.2 Global maps of streamflow charac-
teristics

Global observation-based maps (0.125◦ spatial resolu-
tion) of the five Q characteristics were derived following
Beck et al. (2013b), who used a highly heterogeneous set
of 3548 catchments with areas < 10 000 km2 around the
globe to construct neural-network (NN) models involv-
ing 18 physiographic characteristics to estimate BFI and
k. The catchment set was divided into training and test-
ing subsets for ten cross-validation iterations. For each
iteration a NN model was trained using the training sub-
set of catchments and independently evaluated using the
testing subset of catchments, whereas for each subset R2

and RMSE values were computed. Global maps of dis-
tributed BFI and k were subsequently obtained using
global physiographic data as input for the ten NN mod-
els and calculating the per-pixel median. Uncertainty
estimates were calculated as the per-pixel standard de-
viation (see Beck et al. (2013b) for details). Note that in
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this study the 200 evaluation catchments were excluded
when deriving the global maps.

The newly produced maps were compared to estimates
of the corresponding Q characteristics derived from the
Noah and PCR-GLOBWB models. In addition, the
MAR maps were compared to a MAR map computed us-
ing the Budyko formula (Budyko, 1974) with long-term
mean P taken from the WorldClim dataset (Hijmans
et al., 2005) and long-term mean Penman-Monteith po-
tential evaporation from the Fisher et al. (2011) dataset.
For these comparisons, all maps were averaged to 1◦ reso-
lution, and for each 1◦ latitudinal band and method the
median values of the respective Q characteristics were
calculated.

6.3.3 The HBV-Light model

HBV-Light (Seibert, 2005) is a simple conceptual
rainfall-runoff model run here in a spatially-lumped fash-
ion for the 200 evaluation catchments for 2003–2007.
The HBV-Light model was chosen because of its par-
simony and proven effectiveness under a wide range of
physiographic conditions (Te Linde et al., 2008; Steele-
Dunne et al., 2008; Driessen et al., 2010; Beck et al.,
2013a). The model runs at a daily time step, has two
groundwater stores and one unsaturated-zone store, and
requires daily time series of P , potential evaporation
(PET [mm d−1]), and T as inputs. The stores were ini-
tialized by running the model three times consecutively
without re-initializing the stores in between runs. Table
6.1 describes the model parameters and lists the calibra-
tion ranges used. The routing parameter (MAXBAS)
was set at 1 day and the snow-refreezing parameters
(CFR and CWH) were both set to 0.

PET was calculated using the Priestley-Taylor (P-T)
equilibrium equation (Priestley and Taylor, 1972), a less
input-intensive version of the Penman-Monteith equa-
tion (Allen et al., 1998) with the aerodynamic term re-
moved and an empirical constant (α [-]) added. The P-T
equation performed among the best in a comparison of
six methods to calculate potential evaporation (Lu et al.,
2005). The P-T equation reads:

PET =
α

λ
(Rn −G)

∆

∆ + γ
, (6.2)

where G is the soil heat flux [MJ m−2 d−1], ∆ is the slope
of the saturation vapor pressure-temperature curve [kPa
◦C−1], and λ is the latent heat of vaporization [MJ kg−1].
Time series of G were computed as 0.05×Rn, time series
of λ and ∆ were computed from T following Allen et al.
(1998), and α was set at 1.26.

6.3.4 HBV-Light model configuration 1

Three different HBV-Light model configurations were
used. In the first, the HBV-Light model was run in
a lumped fashion for 2003–2007 for the 200 evaluation
catchments using 2000 candidate parameter sets. The

latter were identified by Latin hypercube sampling (LHS;
McKay et al., 1979) of uniform a priori distributions.
LHS is an improved variant (Yu et al., 2001) of the com-
monly used Monte Carlo technique (Metropolis, 1987;
Beven, 1993; Seibert, 1999) that splits up the parameter
space in 2000 equal intervals from which values for the
parameters were generated by randomly sampling each
interval just once. Table 6.1 gives the sampled range for
each parameter. The median simulated Q (referred to
hereafter as HBV-1) was calculated, reflecting the per-
formance of the HBV-Light model without calibration.

6.3.5 HBV-Light model configuration 2

In the second HBV-Light model configuration the model
parameters were calibrated based on values of the respec-
tive Q characteristics derived from the newly produced
global maps (see section 6.3.2). Specifically, the follow-
ing steps were carried out:

1. The HBV-Light model was run in a lumped fash-
ion for 2003–2007 for the 200 evaluation catchments
using 2000 candidate parameter sets identified by
LHS.

2. The five Q characteristics were computed for each
of the 2000 Q simulations. Additionally, catchment-
mean values of the five Q characteristics were de-
rived from the global maps.

3. All Q characteristics were transformed following Eq.
6.1 to improve the normality and standardized to
allow intercomparison following:

Zi =
Xtrans i −Xi

si
, (6.3)

where Zi and Xtrans i are, respectively, the stan-
dardized and transformed values of Q characteristic
i [-], Xi is the mean of the transformed global map
of Q characteristic i (4.65, 0.22, 1.09, 0.46, and 2.40
for the respective Q characteristics), and si is the
standard deviation of the transformed global map
of Q characteristic i (1.67, 0.24, 1.32, 0.20, 0.78 for
the respective Q characteristics).

4. Standardized upper and lower uncertainty bounds
(wi [-]) were calculated as:

wi =
ei
2si

, (6.4)

where ei is the uncertainty estimate associated with
the global map of Q characteristic i (see section
6.3.2).

5. For each of the 2000 Q simulations the following
aggregate objective function was evaluated:

Ln =

5∑
i=1

max
(∣∣Zmod

i − Zref
i

∣∣− wi, 0) , (6.5)

where Ln is the aggregate objective function asso-
ciated with simulation n [-], i = 1, ..., 5 are the Q



6.3. METHODOLOGY 79

Table 6.1: HBV-Light model parameter units, descriptions, and calibration ranges.

Parameter Units Description Minimum Maximum

TT ◦C Threshold temperature when precipitation is simulated as snowfall −2.5 2.5

CFMAX mm ◦C−1 d−1 Melt rate of the snowpack 0.5 5

SFCF - Snowfall correction factor to account for undercatch 1 1.5

BETA - Shape coefficient of recharge function 0.1 6

FC mm Maximum water storage in the unsaturated-zone store 50 700

K0 d−1 Additional recession coefficient of upper groundwater store 0.05 0.99

K1 d−1 Recession coefficient of upper groundwater store 0.01 0.8

K2 d−1 Recession coefficient of lower groundwater store 0.001 0.15

LP - Soil moisture value above which actual evaporation reaches PET 0.05 1

PERC mm d−1 Maximum percolation to lower zone 0 5

UZL mm Threshold parameter for extra outflow from upper zone 0 100

characteristics [-], and the mod and ref superscripts
denote the standardized and transformed values of
Q characteristic i as derived, respectively, from the
model and the global maps [-]. It follows from Eq.
6.5 that the score for an individual objective func-
tion is 0 when the difference between the value of
the simulated Q characteristic and the value derived
from the global map is < wi, whereas it increases
when the difference between the value of the sim-
ulated Q characteristic and the value derived from
the global map is > wi. It is noted that the utopian
solution (i.e., the simulation n yielding L ≈ 0) will
not always be attainable as the individual objective
functions may conflict with each other.

6. The 50 Q simulations with the lowest values of L
were selected and the median Q was computed. The
resulting Q simulation is referred to hereafter as
HBV-2. The performance difference between HBV-
1 and HBV-2 can be attributed to the use of the
global maps of the respective Q characteristics.

Note that the calibration framework presented here can
also be applied to other hydrological models and ensem-
bles of hydrological models.

6.3.6 HBV-Light model configuration 3

In the third HBV-Light model configuration the model
parameters were calibrated using values of the Q charac-
teristics derived from observed Q data. The same steps
as in HBV-Light model configuration 2 were carried out,
except that the Zref values were derived from observed
Q data for 2003–2007 for each catchment. Additionally,
the upper and lower uncertainty bounds wi were set to
0 for all Q characteristics. The resulting Q simulation,
referred to hereafter as HBV-3, represents the perfor-
mance obtained by calibrating the HBV-Light model in
the gauged situation. The performance difference be-
tween HBV-2 and HBV-3 can be attributed to inaccura-
cies in the global maps.

6.3.7 Assessment of the HBV-Light
model configurations

The effectiveness of the HBV-Light model calibration
procedure using the newly derived global maps of the
various Q characteristics was assessed by comparing esti-
mated (from the global NN maps, HBV-1, HBV-2, HBV-
3, Noah, and PCR-GLOBWB) and observed values of
the Q characteristics for 2003–2007. All values were
transformed using Eq. 6.1 and standardized using Eq.
6.3. The correlation coefficient (R [-]) and the mean dif-
ference (D [-]) between estimated and observed values of
the Q characteristics were calculated. Significance lev-
els (or p values) were not calculated as these may be
misleading (Anderson et al., 2000; Nicholls, 2001).

In addition, for each catchment five commonly used
objective functions were evaluated using daily simu-
lated (from HBV-1, HBV-2, HBV-3, Noah, and PCR-
GLOBWB) and observed Q to assess the ‘real-world’
performance of the different methods. The first is the
Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970; NS
[-]):

NS = 1−

g∑
t=1

(Qto −Qts)2

g∑
t=1

(Qto −Qo)2

, (6.6)

where Qs and Qo are 3-day mean simulated and observed
Q, respectively [mm d−1], t is the time step [-], while the
summation is over t = 1, 2, . . . , g. A 3-day averaging pe-
riod was used to account for the flashy nature of many
streams, which could have resulted in mismatches be-
tween daily peaks of observed and simulated Q. The
second objective function (NSlog [-]) is the NS efficiency
computed from loge-transformed 3-dayQs andQo to give
more weight to low Q values. The third is the NS effi-
ciency computed from monthly mean observed and sim-
ulated Q. The fourth is the long-term bias (B [%]):

B = 100
Qs −Qo

Qo

. (6.7)
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The fifth and final is the absolute long-term bias (|B|
[%]).

6.4 Results

6.4.1 Global maps of streamflow charac-
teristics

Table 6.2 presents mean R2 and RMSE values obtained
for the catchment-scale prediction of the five (trans-
formed) Q characteristics (MARtrans, R1trans, R99trans,
BFItrans, and ktrans). Mean training R2 values of 0.86,
0.76, 0.77, 0.73, and 0.62 were obtained for the respective
Q characteristics (Table 6.2). Fig. 6.2 shows scatterplots
of median estimated vs. observed values of the (trans-
formed) Q characteristics, including the corresponding
linear regression lines. The median estimated values rep-
resent the median estimates of the ten NN models (one
for each cross-validation iteration; see section 6.3.2). The
scatterplots use transformed Q characteristics to avoid
non-robustness issues in the regression analysis. The as-
sociated R2 values are 0.89, 0.82, 0.83, 0.81, and 0.71
for the respective Q characteristics (Fig. 6.2), and are
thus somewhat higher than the mean training R2 values
(Table 6.2).

Global maps of theQ characteristics were derived from
global physiographic data using the NN models. Fig. 6.3
shows for each 1◦ latitudinal band median estimates of
the five Q characteristics as derived from the NN mod-
els and the two macro-scale hydrological models (Noah
and PCR-GLOBWB). Also shown are MAR values es-
timated using Budyko’s formula (panel (a) only). Fig.
6.4 presents global maps of MAR as derived from the
NN models, Noah, and PCR-GLOBWB. The agreement
in terms of MAR among the methods is highest be-
tween ∼20◦S and ∼10◦N (i.e., the tropics; Fig. 6.3a and
6.4). Noah generally produces slightly lower and PCR-
GLOBWB slightly higher MAR relative to the global NN
map (Fig. 6.3a and 6.4). The global NN map produces
somewhat higher MAR than the other methods between
15◦N and 30◦N (which includes the Sahara; Fig. 6.3a and
6.4). PCR-GLOBWB and the global NN map exhibit
similar latitudinal patterns for R1, whereas Noah shows
relatively little latitudinal variability in R1 (Fig. 6.3b).
There is general agreement among the methods in terms
of R99 latitudinal patterns (Fig. 6.3c). Noah agrees well
with the global NN map in terms of BFI south of ∼45◦N,
but produces markedly lower BFI relative to the global
NN map north ∼45◦N (i.e., in snow-dominated regions;
Fig. 6.3d). PCR-GLOBWB shows relatively little latitu-
dinal BFI variability and generally produces somewhat
lower BFI than the global NN map (Fig. 6.3d). Rela-
tive to the global NN map Noah produces lower k-values
north of 60◦N, whereas PCR-GLOBWB indicates higher
k-values across the entire latitudinal range (Fig. 6.3e).

6.4.2 Assessment of the HBV-Light
model configurations

Fig. 6.5 presents scatterplots of estimated (from the
global NN maps, HBV-1, HBV-2, HBV-3, Noah, and
PCR-GLOBWB) against observed values of the vari-
ous Q characteristics for the 200 (independent) evalu-
ation catchments, including the best-fit regression lines.
The correlation coefficients (R) and mean differences
(D) associated with the scatterplots are listed in Ta-
ble 6.3. Among the six methods, HBV-3 (which used
the same observed Q for both calibration and valida-
tion) performed best with R ≥ 0.69 and |D| ≤ 0.30,
followed closely by the global NN maps with R ≥ 0.65
and |D| ≤ 0.36 (Table 6.3). HBV-2 (which used the
global NN maps for calibration) performed well, with
R ≥ 0.36 and |D| ≤ 0.43. HBV-1 (which was uncal-
ibrated) showed fair performance, yielding R ≥ −0.15
and |D| ≤ 0.64. PCR-GLOBWB also showed fair per-
formance, with R ≥ 0.06 and |D| ≤ 2.19, whereas Noah
performed poorly with R ≥ 0.02 and |B| < 1.23 (Table
6.3). MAR estimated using Budyko’s formula against
observed MAR showed an R of 0.79 and a D of −0.02
(corresponding scatterplot not shown).

Since the data were standardized the D values in Table
6.3 can be compared directly between the five Q char-
acteristics. Absolute D values higher than 0.5 reflect a
bias of more than half a standard deviation in the esti-
mated relative to the observed values, indicating major
biases in the estimates. These were found for Noah for
MAR, R1, R99, and BFI with D values of −0.50, −1.23,
−0.59, and −0.82 respectively, and for PCR-GLOBWB
for BFI and k, with D values of −1.29, and 2.19, re-
spectively. Among the five Q characteristics, MAR and
R99 generally exhibited the highest R, whereas R1 and k
generally exhibited the lowest R (Table 6.3). This result
was rather consistent among the six methods.

Table 6.4 shows the median objective function scores
evaluated between simulated and observed Q for each
catchment. HBV-2 (which used the global NN maps
for calibration) outperformed HBV-1 (which was uncal-
ibrated) for all but one of the objective functions (Table
6.4). Relative to HBV-1, HBV-2 reduced the absolute
bias (|B|) from 37.60 % to 26.65 % and increased the
monthly Nash-Sutcliffe efficiency (NS) from 0.20 to 0.23.
HBV-3 (which used the same observed Q for both cali-
bration and validation) performed best among the var-
ious methods, obtaining a |B| value of 19.17 % and a
monthly NS value of 0.35. PCR-GLOBWB performed
slightly less than HBV-1, yielding a |B| value of 51.69
% and a monthly NS value of −0.10, followed by Noah
with a |B| value of 66.05 % and a monthly NS value of
−0.24.
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Table 6.2: Mean R2 and RMSE values obtained for the catchment-scale prediction of the transformed Q characteristics.

Q characteristic Mean R2 Mean RMSE [-]

Training Testing Training Testing

MARtrans 0.86 0.82 0.48 0.54

R1trans 0.76 0.67 0.12 0.15

R99trans 0.77 0.70 0.52 0.61

BFItrans 0.73 0.65 0.12 0.13

ktrans 0.62 0.52 0.36 0.41
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Figure 6.2: Scatterplots of estimated vs. observed values of (a) MARtrans, (b) R1trans, (c) R99trans, (d) BFItrans, (e) ktrans for the
analyzed catchments, including the linear regression line. Each data point represents a catchment (n = 3320). The estimated values are
the median estimates of the ten NN models used (one for each cross-validation iteration). For each iteration the training, validation,
and testing subsets of catchments were included.
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Figure 6.3: For each 1◦ latitudinal band the median (a) MAR, (b) R1, (c) R99, (d) BFI, and (e) k estimates as derived from the global
NN maps, the Noah model, and the PCR-GLOBWB model. Also shown in (a) are MAR estimates derived using Budyko’s formula.
Values are plotted only if there are > 15 pixels of 1◦ resolution with a value within the latitudinal band. Noah and PCR-GLOBWB had
several 1◦ resolution pixels without runoff which prevented the computation of BFI and k. Therefore, these pixels were excluded for all
three methods (the global NN maps, Noah, and PCR-GLOBWB) from the median BFI and k calculation in (d) and (e). Consequently,
the patterns of BFI and k differ from those shown in Fig. 9 of Beck et al. (2013b)

Table 6.3: Correlation coefficient (R) and mean difference (D) as calculated between estimated and observed Q characteristics. The
estimated and observed Q characteristics were transformed using Eq. 6.1 and standardized using Eq. 6.3 prior to calculation of the
statistics. Accordingly, the D values are intercomparable. Each statistic is based on values for the 200 evaluation catchments.

Q characteristic NN models HBV-1 HBV-2 HBV-3 Noah PCR-GLOBWB

R D R D R D R D R D R D

MAR 0.91 0.06 0.84 −0.05 0.91 0.06 0.96 −0.00 0.74 −0.50 0.64 −0.07

R1 0.75 −0.22 0.51 −0.64 0.69 −0.43 0.83 −0.30 0.25 −1.23 0.29 −0.11

R99 0.87 0.29 0.80 −0.09 0.86 0.11 0.93 −0.05 0.67 −0.59 0.45 −0.12

BFI 0.78 −0.36 0.34 0.48 0.74 −0.00 0.95 0.27 0.02 −0.82 0.06 −1.29

k 0.65 −0.28 −0.15 −0.10 0.36 −0.12 0.69 0.16 0.14 0.13 0.08 2.19

Table 6.4: Medians of objective functions evaluated between simulated and observed Q for each catchment and method. The global
NN maps are not shown here since they represent long-term means of the Q characteristics and not continuous Q time series.

Objective function HBV-1 HBV-2 HBV-3 Noah PCR-GLOBWB

3-day NS 0.19 0.13 0.29 −0.13 −0.23

3-day NSlog −0.44 0.08 0.25 −2.31 −1.03

Monthly NS 0.20 0.23 0.35 −0.24 −0.10

B [%] −26.50 −2.22 −7.01 −60.42 −23.63

|B| [%] 37.60 26.65 19.17 66.05 51.69
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(a) NN models MAR [mm yr−1]

2.7 7.4 20.1 54.6 148 403 1097 2981

(b) Noah MAR [mm yr−1]

(c) PCR-GLOBWB MAR [mm yr−1]

Figure 6.4: MAR as derived from (a) the global NN maps, (b) the Noah model, and (c) the PCR-GLOBWB model.
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Figure 6.5: Scatterplots of estimated (from the global NN maps, HBV-1, HBV-2, HBV-3, Noah, and PCR-GLOBWB) against observed
Q characteristics. Estimated values are plotted along the x-axis and observed values along the y-axis. In each scatterplot the x-axis
and y-axis have the same range. The estimated and observed Q characteristics were transformed using Eq. 6.1 and standardized using
Eq. 6.3. Each data point represents a catchment (n = 200). The dashed line is the 1:1 line and the solid line is the best-fit regression
line. Statistics associated with the best-fit regression line are listed in Table 6.3.

6.5 Discussion

6.5.1 Global maps of streamflow charac-
teristics

The neural-network (NN) models were able to success-
fully estimate the five Q characteristics from catchment
physiographic data. The performance of MARtrans was
best with a mean training R2 of 0.86 and a mean test-
ing R2 of 0.82 (Table 6.2). The mean testing R2 value
greatly exceeds the R2 range of 0.55–0.70 obtained in the
validation of (non-transformed) MAR from 14 macro-
scale land-surface models and six Budyko-type models
against observed Q for 150 large catchments (>10 000
km2) around the globe by Zhou et al. (2012). To
our knowledge, no studies have estimated R1 and R99
from catchment physiographic data. The obtained mean
training R2 of 0.73 obtained for BFItrans is in the up-
per range of training R2 values obtained by various
regional studies that estimated (non-transformed) BFI
from physiographic data (e.g., Boorman et al., 1995;

Lacey and Grayson, 1998; Neff et al., 2005; Santhi et al.,
2008; Van Dijk, 2010; Ahiablame et al., 2013). Although
the mean training R2 of 0.62 obtained for ktrans was
the lowest among the Q characteristics examined (Table
6.2), it is still in the upper range of training R2 values
obtained by other more regional studies (Post and Jake-
man, 1996; Brandes et al., 2005; Demuth and Hagemann,
1994; Krakauer and Temimi, 2011; Peña-Arancibia et al.,
2010; Van Dijk, 2010).

Global maps of the five Q characteristics were pro-
duced using the established NN models from global
physiographic data. MAR is arguably the most impor-
tant Q characteristic, and yet there are substantial dif-
ferences between the respective methods (NN models,
Noah, and PCR-GLOBWB; Figs. 6.3a and 6.4). The
Noah-based results exhibited little variability in terms
of R1 over the entire latitudinal range (Fig. 6.3b), possi-
bly because no topography-related information is used in
the model’s parameterization. This essentially suggests
Noah is unable to simulate flows in mountainous and
humid-tropical environments satisfactorily. Noah fur-
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ther appears to produce excessive quickflow in the Arctic
domain (Fig. 6.3d), which is in agreement with the find-
ings of Slater et al. (2007), who used observed Q of four
large Arctic catchments (>1 680 000 km2). The overesti-
mation of quickflow under Arctic conditions is likely due
to excessive reduction of the soil infiltration capacity un-
der freezing conditions in the version of Noah used here
(cf. Niu et al., 2011). By contrast, PCR-GLOBWB pre-
dicted volumes of quickflow that were too high across the
entire latitudinal range relative to the NN models and
Noah (Fig. 6.3d), suggesting that a re-evaluation of the
model’s runoff subroutine might be in order. The poor
agreement for k between the three methods (Fig. 6.3e)
and the relatively poor performance of the NN model for
k (Table 6.2 and Fig. 6.2e) suggests the estimation of k to
be the most challenging among the five Q characteristics
examined here.

6.5.2 Assessment of the HBV-Light
model calibration configurations

The global NN maps of the five Q characteristics dis-
cussed in the previous sub-section have the potential
to globally improve the parameterization of hydrologi-
cal models. This was tested using a simple conceptual
rainfall-runoff model (HBV-Light) calibrated for 200 (in-
dependent) evaluation catchments using values of the Q
characteristics derived from the global NN maps (HBV-
2). HBV-2 showed substantially better performance
than the HBV-Light model without calibration (HBV-1)
for all Q characteristics (Fig. 6.5 and Table 6.3), demon-
strating the effectiveness of the calibration procedure.
The improved representation of the Q characteristics in
HBV-2 led, in turn, to improvements in the medians of
four traditional Q performance measures (3-day NSlog,
monthly NS, B, and |B|) but also to a deterioration in
the median of one measure (3-day NS; Table 6.4). The
deterioration in the median 3-day NS is due to the high
sensitivity of the NS efficiency value to peakflows (cf.
Eq. 6.6). Although HBV-1 simulated lower peakflows
compared to HBV-2, HBV-2 generally yielded a larger
value of the numerator in Eq. 6.6 resulting in a lower NS
because of mismatches between observed and simulated
peakflows, mostly due to the relatively poor quality of
the P data. HBV-3 exhibited superior performance com-
pared to all other models (HBV-1, HBV-2, Noah, and
PCR-GLOBWB) because it was calibrated using Q char-
acteristics derived from the same observed Q data also
employed for the validation. HBV-3 obtained R ≥ 0.69
and |B| ≤ 0.27 between simulated and observed values
of the Q characteristics (Table 6.3), suggesting that the
HBV-Light model is capable of capturing a wide range
of Q characteristics by exploring the a priori parameter
space. This further suggests that the aggregate objective
function (Eq. 6.5) is capable of identifying the ‘optimal’
solution for most catchments.

Other studies demonstrating that Q characteristics
estimated from catchment physiographic characteristics

can be used to calibrate hydrological models had a re-
gional focus (Yadav et al., 2007; Zhang et al., 2008a; Cas-
tiglioni et al., 2010; Lombardi et al., 2012; Pinheiro and
Naghettini, 2012). These studies used ≤ 30 catchments
and multi-variate linear regression to estimate the Q
characteristics from physiographic data. However, larger
catchment sets reveal that the relationships are often de-
cidedly non-linear (cf. Van Dijk, 2010; Peña-Arancibia
et al., 2010; Beck et al., 2013b), necessitating the use of
non-linear models such as neural networks. In addition,
these regional studies did not transform the Q character-
istics to make their distributions approximate normality,
which may confound the estimation of Q characteristics
from physiographic data and the calibration exercise (cf.
Parada and Liang, 2010). However, several of the stud-
ies (Yadav et al., 2007; Zhang et al., 2008a; Castiglioni
et al., 2010) provide Q uncertainty ranges, which can be
calculated here from the 50 selected Q simulations (see
section 6.3.5 step six).

In light of the slightly lower performance of the two
(uncalibrated) macro-scale models examined (Noah and
PCR-GLOBWB) in terms of both Q characteristics (Fig.
6.5 and Table 6.3) and traditional performance measures
calculated from observed and simulated daily continu-
ous streamflow time series (Table 6.4), one should bear
in mind that these models were not specifically devel-
oped to provide continuous Q time series for such small
catchments at a daily time step. Further, they may
perform considerably better at other Q characteristics
or for catchments not examined here. It must also be
emphasized that other macro-scale models are likely to
exhibit similar performance. Nevertheless, our results
indicate that Noah generally underestimated MAR, R1,
and R99 (i.e., produced too little flow overall; see Figs.
6.5e, 6.5k, and 6.5q, respectively, and Table 6.3), which
has been confirmed by Zaitchik et al. (2010) using ob-
served Q data for 66 large catchments (> 19 000 km2)
around the globe. PCR-GLOBWB generally underesti-
mated BFI (i.e., produced excess quickflow; Fig. 6.5x and
Table 6.3) and overestimated k (i.e., the baseflow recedes
too slowly; Fig. 6.5D and Table 6.3). PCR-GLOBWB
further produced relatively unbiased MAR (Table 6.3),
although the scatter was large (Fig. 6.5f). However, this
scatter is likely to average out in larger catchments, as
shown by Van Beek and Bierkens (2009) using observed
Q data for 19 large catchments (> 65 000 km2) world-
wide. Since the global NN maps appear to outperform
both models (Fig. 6.5 and Table 6.3) it is conceivable
that the global NN maps can be employed to refine the
parameterization and/or structure of Noah and PCR-
GLOBWB. The global NN maps should further prove
useful for macro-scale hydrological models having spa-
tial resolutions down to 1 km that are anticipated in
the near future (Wood et al., 2011), since the global NN
maps have a resolution limited only by the resolution of
the input data used.

Further research should focus on expanding the ob-
served Q dataset in data-poor regions (i.e., outside the
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USA, Europe, and Australia), on identifying disinforma-
tive data in the observed Q dataset (cf. Kauffeldt et al.,
2013), and on refining and/or expanding the selection
of Q characteristics. For example, the addition of a
Q characteristic related to the seasonal timing of flows
could improve our ability to estimate the arrival of spring
snowmelt in mountainous or sub-Arctic catchments. It
should be noted that to warrant the inclusion of a par-
ticular Q characteristic in the calibration of a hydrolog-
ical model the estimates from the NN model need to be
better than the initial estimates from the hydrological
model under consideration. Furthermore, the global NN
map of MAR may be corrected for bias using MAR as
estimated for interstation regions from observed Q data
of very large catchments (cf. Fekete et al., 1999, 2002).

6.6 Conclusion

The present study is the first to present an approach
to globally improve the parameterization of hydrological
models using Q characteristics. The main findings are
as follows:

1. Global maps of five Q characteristics (MAR, R1,
R99, BFI, and k) were successfully produced using
neural-network (NN) models based on observed Q
and physiographic data for 3320 catchments world-
wide (Table 6.2 and Fig. 6.2). Global patterns of
mean annual runoff (MAR) as derived from the NN
models, the Noah model, and the PCR-GLOBWB
model demonstrated relatively low agreement (Fig.
6.3 and 6.4a). It was further found that Noah
showed little latitudinal variability in terms of the
1st percentile runoff (R1; Fig. 6.3b) and produced
more quickflow in northern latitudes relative to the
NN models (Fig. 6.3d), whereas PCR-GLOBWB
produced more quickflow over most of the land sur-
face relative to the NN models (Fig. 6.3d).

2. A simple conceptual rainfall-runoff model (HBV-
Light) was calibrated for 200 independent catch-
ments using values of the five examined Q charac-
teristics as derived from the newly produced maps
(HBV-2). The simulated Q characteristics improved
considerably relative to the uncalibrated HBV-Light
model (HBV-1; Fig. 6.5 and Table 6.3). This, in
turn, led to improvements in most of the traditional
performance measures, particularly in those related
to the long-term water balance (Table 6.4). Noah
and PCR-GLOBWB performed somewhat less than
the global NN maps in terms of specific Q character-
istics (Fig. 6.5 and Table 6.3), suggesting that the
global NN maps can be used to improve the param-
eterization and/or structure of these models.
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Chapter 7

Summary

7.1 Conclusions

The main findings of the thesis can be summarized as fol-
lows (the respective items listed below correspond to the
specific objectives defined in the introductory chapter):

1. In Chapter 2 different antecedent soil moisture
proxies representing catchment wetness status were
tested for their ability to improve Curve Number-
based peakflow predictions for 186 unregulated
Australian catchments. The examined antecedent
soil moisture proxies were based on gauged pre-
cipitation, baseflow (obtained by separating the
observed streamflow record), TRMM precipita-
tion, and AMSR-E surface soil moisture. It was
found that the 5-day antecedent precipitation in-
dex computed from gauge precipitation, the gener-
ally recommended soil moisture proxy for use with
the Curve Number model, performed considerably
worse than an antecedent precipitation index based
on gauged precipitation using an optimized decay
factor. It was further found that the latter per-
formed better than the soil moisture proxies based
on AMSR-E surface soil moisture and TRMM pre-
cipitation, demonstrating the continued importance
of a sufficiently dense precipitation-gauge network.
The greatest improvements in model runoff predic-
tion performance were typically obtained for arid
catchments, possibly reflecting the larger variabil-
ity in catchment wetness levels occurring under such
conditions compared to more humid climates.

2. In Chapter 3 the degree of agreement between
four widely used AVHRR-NDVI datasets (PAL,
GIMMS, LTDR V3, and FASIR) for assessing veg-
etation productivity was examined. In addition,
these datasets and the NDVI based on the more
modern MODIS instrument were globally validated
against 11 764 high-resolution (∼30 m) NDVI sam-
ples (20×20 km2) derived from the Landsat-5 The-
matic Mapper, which has on-board calibration de-
vices. The trends in mean NDVI were positive for
all continents and all four AVHRR-NDVI datasets,
with trends derived from the PAL dataset generally
being the strongest and the ones from the GIMMS
dataset generally the weakest. Significantly equal

trends between the datasets were found over 48 % of
the total land surface only, which is a low proportion
considering that each dataset was based on the same
AVHRR Global Area Coverage archive. The LTDR
V3 and PAL showed trends in desert areas devoid
of vegetation and were thus improperly calibrated.
The validation against Landsat-derived NDVI val-
ues indicated that the LTDR V3 dataset is the most
accurate in terms of absolute NDVI values, whereas
the GIMMS dataset is the most accurate in terms
of NDVI change over time. However, NDVI de-
rived from the MODIS instrument strongly outper-
formed all AVHRR-NDVI datasets examined. As
such, it is considered unlikely that these AVHRR-
NDVI datasets presently can be used to obtain ac-
curate global information on land cover or land use
change, as the data are subject to a high degree of
uncertainty. In addition, they have a coarse spa-
tial resolution (0.05◦ for the LTDR V3 dataset and
0.08◦ for the other AVHRR-NDVI datasets) and
employ the maximum-value compositing technique,
which favourably selects patches with high NDVI
values within a pixel. Finally, it was found that
taking the simple average of the four AVHRR-based
datasets resulted in NDVI values which compared
better to Landsat-NDVI than all of the AVHRR-
NDVI datasets individually, indicating that the er-
rors in respective datasets are to a certain degree
unrelated.

3. In Chapter 4 the possible impacts of forest regrowth
on streamflow characteristics were examined for 12
meso-scale (23–346 km2) catchments on the humid
tropical island of Puerto Rico. Long-term records of
precipitation and potential evaporation were used
to drive a simple conceptual rainfall-runoff model
(HBV-Light), producing simulated streamflow that
integrated the effects of carry-over water storage be-
tween successive years as well as climate variabil-
ity during the streamflow observation period. For
each catchment, simulated and observed time series
of four streamflow characteristics were calculated:
(1) the annual 95th percentile (i.e., the percentage
of time that this level of flow is not exceeded) of
daily streamflow (indicative of peak flows); (2) the
annual mean streamflow (indicative of total water
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yield); (3) the annual 5th percentile daily stream-
flow (indicative of low flows); and (4) the annual
mean dry-season (January–March) streamflow. In
addition, trends in the deviations between simu-
lated and observed values for the respective stream-
flow metrics were evaluated. These represented the
change in observed streamflow characteristics after
taking the effects of water storage carry-over and
climate variability into account. However, no clear
relationships were found between changes in stream-
flow characteristics and changes in either forested
or urban area per catchment. These findings are in
line with previous studies of meso- and macro-scale
(sub-)tropical catchments, which generally found no
significant change in streamflow that could be at-
tributed to changes in forest area. Possible expla-
nations for the presently found lack of a clear rela-
tionship include: (1) data errors (notably for precip-
itation); (2) the changes in forest area occur mainly
in the less rainy lowlands (thereby having a less pro-
nounced effect on overall streamflow relative to the
same change in forest cover if effected over the wet-
ter upland parts of the catchments); and (3) het-
erogeneity among the catchments in terms of the
streamflow response to forest regrowth (due to dif-
ferences in vegetation cover and/or land-use history
not being accounted for by the semi-quantitative
classification used, or because of differences in mor-
phology, geology, and/or soils between the catch-
ments).

4. In Chapter 5 relationships between 18 catchment
physiographic characteristics (related to soils, to-
pography, climate, and land cover) and two impor-
tant baseflow characteristics were analyzed using a
diverse set of 3520 unregulated catchments world-
wide. Previous studies have typically used < 200
catchments and regional datasets, resulting in less
reliable relationships with potentially limited appli-
cability elsewhere. The used baseflow character-
istics were: (1) the baseflow index (BFI), defined
as the ratio of long-term mean baseflow to total
streamflow; and (2) the baseflow recession constant
(k), defined as the rate of baseflow decay. The two
baseflow characteristics proved to be related to sev-
eral physiographic characteristics, notably mean an-
nual potential evaporation, mean catchment eleva-
tion, mean surface slope, fraction of open water, and
the mean sand content of the soil. The relationships
were generally highly non-linear and heteroscedastic
(i.e., showing variable scatter). Artificial neural net-
work ensembles were subsequently used to estimate
the two baseflow characteristics for the catchments.
Mean training R2 values of 0.73 and 0.62 were ob-
tained for BFI and k, respectively, suggesting that
artificial neural network ensembles provide a viable
alternative to the commonly used multi-variate lin-
ear regression approach. In addition, global maps
of the two baseflow characteristics were produced

using global physiographic data as input to the es-
tablished artificial neural network ensembles. These
maps offer unique opportunities for macro-scale hy-
drological studies, including the diagnosis and pa-
rameterization of macro-scale hydrological models
(land surface schemes and global hydrological mod-
els), water resource assessments, catchment classi-
fication, and groundwater recharge estimation (see
also below).

5. In Chapter 6 global maps of five important
streamflow characteristics were produced using the
methodology developed in Chapter 5 in combination
with streamflow and physiographic data for 3320
undisturbed catchments around the globe. The
streamflow characteristics were: (1) mean annual
runoff (indicative of total water yield); (2) annual
1st percentile of daily streamflow (indicative of low
flows); (3) annual 99th percentile of daily stream-
flow (indicative of peakflows); (4) BFI; and (5) k.
It was found that the global patterns of the newly
produced maps differed considerably from equiv-
alent maps as derived from two commonly used
macro-scale hydrological models (Noah and PCR-
GLOBWB). Next, the HBV-Light rainfall-runoff
model was calibrated using values of the stream-
flow characteristics derived from the newly pro-
duced maps for 200 independent catchments. This
resulted in substantial improvements in the sim-
ulated streamflow characteristics as compared to
values obtained with the uncalibrated HBV-Light
model. These improvements in streamflow charac-
teristics, in turn, led to improvements in most of
the traditional model performance measures calcu-
lated from observed and simulated daily continu-
ous streamflow time series, including the long-term
bias and the Nash-Sutcliffe efficiency. These find-
ings demonstrate that the newly produced maps of
the respective streamflow characteristics examined
can be employed to improve the parameterization
and/or structure of hydrological models at a global
scale.

7.2 Recommendations

A recurring feature of each of the chapters of this thesis
has been the use of large observational datasets in order
to arrive at more confident conclusions. As discussed
more fully in the introductory chapter, such large ob-
servational datasets have become increasingly available
owing to recent advances in remote-sensing technology,
processing power, and data dissemination. Arguably,
in each of the chapters, the use of a data-subset only,
might well have led to very different conclusions (see,
e.g., the Discussion section in Chapter 4 on streamflow
response to tropical regrowth in Puerto Rico). Naturally,
at the global scale, the use of these large observational
datasets is a conditio sine qua non when trying to bet-
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ter understand how the hydrological cycle will respond
to global climate change and human-induced changes in
land cover and land use or land degradation (cf. Jones,
2005; Andréassian et al., 2007; Peña-Arancibia, 2013;
Gupta et al., 2013). In addition, using all available data
(including outliers) is likely to present a more balanced
picture to potential end-users (Andréassian et al., 2007).

In Chapter 2 it was found that the TRMM-based
precipitation estimates and AMSR-E-based surface soil
moisture data used as proxies for catchment-scale wet-
ness status (and thus runoff response to rainfall) showed
poor predictive performance compared to ground-based
measured precipitation. Better results may be achieved
when using the successor to TRMM, the Global Pre-
cipitation Measurement (GPM) mission (Smith et al.,
2004) which is to be launched in early 2014. The GPM
mission is targeted to provide precipitation data with
significantly improved accuracy, spatial coverage and
resolution, and at an average revisit time of less than
three hours in many regions of the world. Further im-
provements in estimating catchment-scale wetness sta-
tus may be expected using surface soil-moisture prod-
ucts derived from the recently launched European Space
Agency (ESA) Soil Moisture Ocean Salinity (SMOS)
mission (Kerr et al., 2001) or from the National Aero-
nautics and Space Administration (NASA) Soil Moisture
Active/Passive (SMAP) mission (Entekhabi et al., 2010)
which is to be launched in 2015. Arguably, the develop-
ment of remotely-sensed surface soil moisture products
based on observations from multiple sensors (e.g., Liu
et al., 2011; Dorigo et al., 2012) is particularly promis-
ing.

The newly derived observation-based maps of various
important streamflow characteristics developed in Chap-
ters 5 and 6 will be made available free of charge for
downloading, and should be useful for a variety of macro-
scale hydrological applications. Amongst the potential
applications is a global diagnosis of macro-scale hydro-
logical models (land surface schemes and global hydro-
logical models), as demonstrated in Chapter 6 where the
global patterns of the newly derived maps were compared
with equivalent maps derived from two macro-scale mod-
els (Noah and PCR-GLOBWB). The new maps fur-
ther offer unique opportunities for the parameterization
of such macro-scale hydrological models, including the
type of ‘hyper-resolution’ models that are anticipated
in the near future (Wood et al., 2011). The stream-
flow characteristic maps may also be used for general
water resource assessments and for comparing the be-
havior of different catchments (i.e., catchment classifi-
cation; Wagener et al., 2007). In addition, the global
streamflow map offers possibilities for correcting pre-
cipitation biases in mountainous and/or humid regions
due to topographic biases in gauge placement, interpo-
lation errors, and/or wind-induced snowfall undercatch
(cf. Adam et al., 2006). Furthermore, the global stream-
flow and BFI maps can be combined to provide a first es-
timate of groundwater recharge for any location around

the globe (cf. Szilagyi et al., 2003).
Last but not least, the methodology adopted in Chap-

ters 5 and 6 to produce global maps of various impor-
tant streamflow characteristics proved highly efficient
and flexible, and deserves to be used to derive additional
global maps of other important streamflow characteris-
tics. For example, the addition of a streamflow charac-
teristic related to the timing of flows could be important
to estimate the arrival of spring snowmelt in mountain-
ous and/or sub-Arctic catchments. The methodology
could perhaps also be employed to estimate global pat-
terns of other key biophysical, hydrological, or climatic
variables.
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Chapter 8

Samenvatting

8.1 Conclusies

De belangrijkste bevindingen van dit proefschrift kunnen
als volgt worden samengevat (de onderstaande onderwer-
pen betreffen achtereenvolgens de specifieke doelstellin-
gen zoals gedefinieerd in het inleidende hoofdstuk):

1. In hoofdstuk 2 worden verschillende
bodemvochtindicatoren getest op hun vermo-
gen om voorspellingen van piekafvoeren gebaseerd
op de zogeheten Curve Number methode voor 186
niet-gereguleerde Australische stroomgebieden te
verbeteren. De onderzochte bodemvochtindicatoren
waren gebaseerd op de grootte van gemeten neer-
slag, basisafvoer (verkregen door het scheiden van
de gemeten afvoer in basis- en snelle afvoeren met
behulp van een digitaal filter), TRMM-gebaseerde
neerslag en AMSR-E-gebaseerd oppervlakkig
bodemvochtgehalte. Het bleek dat de vijfdaagse
neerslagindex berekend op basis van de gemeten
neerslag, de bodemvochtindicator die standaard
aanbevolen wordt voor gebruik met het Curve
Number model, aanzienlijk slechter presteert dan
een neerslagindex gebaseerd op de gemeten neerslag
met een geoptimaliseerde vervalfactor. Bovendien
werd vastgesteld dat laatstgenoemde variabele
beter presteert dan de bodemvochtindicatoren
gebaseerd op AMSR-E oppervlaktebodemvocht en
TRMM neerslag, wat het belang van een dicht
neerslagmeetnetwerk benadrukt. De grootste
verbeteringen in piekafvoervoorspellingen werden
over het algemeen verkregen voor stroomgebieden
in relatief droge gebieden, mogelijk vanwege de
grotere variabiliteit in bodemvocht onder dergelijke
condities in vergelijking met vochtiger klimaten.

2. In hoofdstuk 3 wordt de mate van overeenstem-
ming tussen vier AVHRR-NDVI datasets (PAL,
GIMMS, LTDR V3 en FASIR), die veelvuldig ge-
bruikt worden als indicator van de mate van pro-
ductiviteit van de vegetatie in een gebied, on-
derzocht. Daarnaast werden deze vier datasets,
en NDVI-waarden gebaseerd op het modernere
MODIS satelliet-instrument, wereldwijd gevalideerd
ten opzichte van 11 764 hoge-resolutie (∼30 m)
NDVI afbeeldingen (20×20 km2) gebaseerd op de

Landsat-5 Thematic Mapper sensor, die voorzien is
van kalibratieapparatuur. De trends in de jaarli-
jkse NDVI-waarden waren positief voor alle conti-
nenten voor alle vier de onderzochte AVHRR-NDVI
datasets, waarbij de trends afgeleid van de PAL
dataset over het algemeen het meest uitgesproken
en die van de GIMMS dataset over het algemeen
het minst uitgesproken waren. Gelijk opgaande
trends voor de verschillende datasets werden gevon-
den voor 48 % van het totale landoppervlak, wat
als laag beschouwd dient te worden gezien het feit
dat elke dataset gebaseerd is op hetzelfde AVHRR
Global Area Coverage archief. De LTDR V3 en PAL
datasets vertoonden trends voor woestijngebieden
die verstoken waren van vegetatie en deze datasets
zijn derhalve niet goed gekalibreerd. De validatie
ten opzichte van NDVI gebaseerd op Landsat gaf
aan dat de LTDR V3 dataset het meest nauwkeurig
is in termen van absolute NDVI-waarden en dat de
GIMMS dataset het meest nauwkeurig is in ter-
men van temporele variaties in NDVI. De NDVI
afgeleid van het MODIS instrument presteert echter
beter dan alle andere onderzochte AVHRR-NDVI
datasets. Gezien de hoge onzekerheid die inher-
ent is aan de AVHRR-NDVI datasets is het on-
waarschijnlijk dat deze datasets gebruikt kunnen
worden om betrouwbare en accurate wereldwijde
informatie over veranderingen in landbedekking of
landgebruik te verkrijgen. Daarnaast hebben de
gegevens een grove ruimtelijke resolutie (0.05◦ voor
de LTDR V3 dataset en 0.08◦ voor de overige
AVHRR-NDVI datasets) en maken deze gebruik
van de zogenoemde ‘maximale waarde’ compositi-
etechniek, die bij voorkeur stukken grond met hoge
NDVI-waarden binnen een pixel selecteert. Ten
slotte bleek dat het nemen van het gemiddelde
van de vier AVHRR datasets resulteerde in NDVI-
waarden die beter overeenkwamen met de Landsat-
NDVI dataset dan elke AVHRR-NDVI dataset af-
zonderlijk, hetgeen suggereert dat de fouten in de
AVHRR-NDVI datasets in zekere mate onafhanke-
lijk van elkaar zijn.

3. In hoofdstuk 4 worden de mogelijke effecten van
boshergroei op rivierafvoerkarakteristieken onder-
zocht met gegevens voor 12 middelgrote (23–
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346 km2) stroomgebieden op het tropische eiland
Puerto Rico. Langdurige metingen van neerslag
en potentiële verdamping werden gebruikt om een
eenvoudig conceptueel neerslag-afvoermodel (HBV-
Light) te sturen, wat resulteerde in gesimuleerde
afvoer die rekening houdt met de effecten van
klimaatschommelingen alsmede wateropslag in de
bodem tussen opeenvolgende jaren. Voor elk
stroomgebied werden gesimuleerde en gemeten ti-
jdreeksen van vier afvoerkarakteristieken berekend:
(1) het jaarlijkse 95ste percentiel (dat wil zeggen
het percentage van de tijd dat dit afvoerniveau niet
overschreden wordt) van de dagelijks afvoer (indi-
catief voor piekafvoeren); (2) de gemiddelde jaarli-
jkse afvoer (indicatief voor de totale afvoer); (3) het
jaarlijkse vijfde percentiel van de dagelijkse afvoer
(indicatief voor de basisafvoer); en (4) de gemid-
delde jaarlijkse afvoer gedurende het droge seizoen
(januari–maart). Verder werden trends in de afwijk-
ing tussen gesimuleerde en gemeten waarden voor de
verschillende afvoerkarakteristieken berekend, welke
de verandering in de waargenomen afvoerkarakter-
istieken representeren die niet het gevolg zijn van
de effecten van klimaatvariabiliteit of wateropslag
in de bodem. Er werd echter geen duidelijke re-
latie gevonden tussen veranderingen in de respec-
tievelijke afvoerkarakteristieken en veranderingen in
het areaal per stroomgebied aan bos of stedelijk ge-
bied. Dit is in overeenstemming met voorgaande
studies op meso- en macroschaal van (sub)tropische
stroomgebieden, die over het algemeen geen signif-
icante afvoerveranderingen vonden die konden wor-
den toegeschreven aan veranderingen in bosareaal.
Mogelijke verklaringen voor het ontbreken van een
duidelijke relatie in de hier onderzochte stroomge-
bieden zijn: (1) fouten in de gemeten tijdreeksen,
met name in de neerslagmetingen; (2) veranderin-
gen in het bosareaal die vooral plaatsvonden in de
minder regenachtige laaglanden van de onderzochte
stroomgebieden, wat een minder uitgesproken effect
op de afvoer heeft dan wanneer dezelfde verander-
ing in bosareaal plaats zou vinden in de nattere
hooggelegen delen van de stroomgebieden; en (3)
verschillen tussen de stroomgebieden in termen van
de afvoerrespons op boshergroei, als gevolg van ver-
schillen in de gebruikte vegetatieclassificeringen op
verschillende tijdstippen (1951, 1978, 1991 en 2000)
en daarmee in de karakterisering van het landge-
bruik met de tijd), of als gevolg van verschillen in
geomorfologie, geologie en/of bodems tussen de on-
derzochte stroomgebieden.

4. In hoofdstuk 5 zijn de relaties tussen 18 fysiografis-
che karakteristieken (met betrekking tot bodems,
topografie, klimaat en landbedekking) en twee be-
langrijke basisafvoer-karakteristieken geanalyseerd
met behulp van een gevarieerde dataset bestaande
uit 3520 niet-gereguleerde stroomgebieden wereld-
wijd. Eerdere studies gebruikten doorgaans < 200

stroomgebieden en veelal meer regionale fysiografis-
che datasets, wat in het algemeen resulteerde in
minder betrouwbare relaties tussen afvoerkarak-
eristieken en terreinvariabelen met bovendien een
beperkte toepasbaarheid elders. De in de huidige
studie gebruikte basisafvoer-karakteristieken waren:
(1) de basisafvoerindex (BFI), gedefinieerd als de
verhouding tussen de gemiddelde basisafvoer en de
totale afvoer; en (2) de basisafvoer-vervalconstante
(k), gedefinieerd als de vervalsnelheid (recessie) van
de basisafvoer. Beide basisafvoer-karakteristieken
bleken goed gerelateerd te zijn aan een aantal
gebiedskarakteristieken, waaronder de gemiddelde
jaarlijkse potentiële verdamping, de gemiddelde
stroomgebiedshoogte, de gemiddelde helling van het
oppervlak, de fractie ingenomen door oppervlakte-
water (meren, moerassen, e.d.) en de gemiddelde
zandfractie van de bodem. De relaties waren door-
gaans sterk niet-lineair en heteroscedastisch (dat
wil zeggen, met variabele spreiding). Ensembles
van kunstmatige neurale netwerken werden vervol-
gens getraind om waarden van de twee basisafvoer-
karakteristieken voor alle stroomgebieden te schat-
ten uit combinaties van fysiografische variabelen.
Gemiddelde training R2 waarden van 0.73 en 0.62
werden verkregen voor respectievelijk BFI en k,
wat suggereert dat ensembles van kunstmatige neu-
rale netwerken een goed alternatief kunnen bieden
voor de doorgaans gebruikte multivariabele lineaire
regressietechnieken. Daarnaast werden wereldwi-
jde kaarten van beide basisafvoer-karakteristieken
geproduceerd door globale fysiografische data als
invoer te gebruiken voor de getrainde neurale
netwerken. Deze kaarten bieden unieke mogelijkhe-
den voor macro-hydrologische studies, waaronder
het diagnosticeren en parametriseren van macro-
hydrologische modellen, het beheer van watervoor-
raden, het classificeren van stroomgebieden en het
schatten van de aanvulsnelheid van het grondwater
(zie tevens hieronder).

5. In hoofdstuk 6 zijn wereldwijde kaarten van vijf be-
langrijke afvoerkarakteristieken geproduceerd met
behulp van de methodologie ontwikkeld in hoofd-
stuk 5 en afvoer- en fysiografische gegevens voor
3320 niet gereguleerde stroomgebieden uit de hele
wereld. De bestudeerde afvoerkarakteristieken
waren: (1) de gemiddelde jaarlijkse afvoer (indi-
catief voor de totale afvoer); (2) het jaarlijkse eerste
percentiel van de dagelijks afvoer (indicatief voor de
basisafvoer); (3) het jaarlijkse 99ste percentiel van
de dagelijks afvoer (indicatief voor de piekafvoer);
(4) de BFI; en (5) de k. Het bleek dat de wereld-
wijde patronen van de nieuwe kaarten aanzienlijk
verschilden van gelijksoortige kaarten gebaseerd op
twee veelgebruikte macro-hydrologische modellen
(Noah en PCR-GLOBWB). Vervolgens werd het
HBV-Light neerslag-afvoermodel gekalibreerd met
behulp van waarden van de afvoerkarakteristieken
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afgeleid uit de nieuwe kaarten voor 200 onafhankeli-
jke stroomgebieden. Dit resulteerde in een aanzien-
lijke verbetering in de gesimuleerde afvoerkarak-
teristieken vergeleken met waarden gebaseerd op
het ongekalibreerde HBV-Light model. Deze ver-
beteringen in afvoerkarakteristieken leidden vervol-
gens tot verbeteringen in de meeste traditionele
modelprestatieindicatoren berekend op basis van
dagelijkse gemeten en gesimuleerde afvoertijdreek-
sen, zoals de Nash-Sutcliffe efficiëntie. Deze bevin-
dingen tonen aan dat de nieuwe kaarten van de afvo-
erkarakteristieken kunnen worden gebruikt om de
parametrisering en/of structuur van hydrologische
modellen op wereldschaal verder te verbeteren.

8.2 Aanbevelingen

Een terugkerend kenmerk van de verschillende hoofd-
stukken van dit proefschrift is het gebruik van grote
observationele datasets om tot robuustere conclusies te
komen. Zoals uitgebreider besproken in het inleidende
hoofdstuk, komen zulke grote observationele datasets
steeds meer beschikbaar als gevolg van recente ontwikke-
lingen in satelliettechnologie (‘remote sensing’), comput-
errekenkracht en gegevensverbreiding. In elk van de
hoofdstukken zou het gebruik van slechts een gedeelte
van de dataset ongetwijfeld hebben geleid tot heel an-
dere conclusies (zie bijvoorbeeld de discussiesectie van
hoofdstuk 4 over het effect van boshergroei op rivier-
afvoeren in Puerto Rico). Op wereldschaal is het ge-
bruik van deze grote observationele datasets een conditio
sine qua non wanneer men probeert te begrijpen hoe de
hydrologische kringloop zal reageren op de wereldwijde
klimaatverandering en door de mens veroorzaakte veran-
deringen in landbedekking en -gebruik of landdegradatie
(Jones, 2005; Andréassian et al., 2007; Peña-Arancibia,
2013; Gupta et al., 2013). Bovendien zal het gebruik
van alle beschikbare gegevens (inclusief ‘uitschieters’)
waarschijnlijk een evenwichtiger beeld presenteren aan
potentiële eindgebruikers (Andréassian et al., 2007).

In hoofdstuk 2 bleek dat de bodemvochtindicatoren
gebaseerd op TRMM neerslag en AMSR-E oppervlak-
tebodemvochtgehalte slecht presteerden in vergelijking
met een bodemvochtindicator gebaseerd op gemeten
neerslag. Wellicht kunnen betere resultaten verkre-
gen worden met neerslag gebaseerd op de opvolger van
TRMM, de Global Precipitation Measurement (GPM)
missie (Smith et al., 2004) die begin 2014 zal wor-
den gelanceerd. De GPM missie zal neerslaggegevens
leveren met een aanzienlijk verbeterde nauwkeurigheid,
ruimtelijke dekking en resolutie, en zal een gemiddelde
terugkeertijd van minder dan drie uur hebben in veel re-
gio’s van de wereld. Verdere verbeteringen in het schat-
ten van de vochtstatus van de bodem kunnen worden
verwacht door het gebruik van oppervlaktebodemvocht-
gegevens afkomstig van de recent gelanceerde Euro-
pean Space Agency (ESA) Soil Moisture Ocean Salin-

ity (SMOS) missie (Kerr et al., 2001) of van de Na-
tional Aeronautics and Space Administration (NASA)
Soil Moisture Active/Passive (SMAP) missie (Entekhabi
et al., 2010), die in 2015 zal worden gelanceerd. Verder is
de ontwikkeling van oppervlaktebodemvochtproducten
gebaseerd op gegevens van meerdere sensoren tegelijk-
ertijd (bijvoorbeeld Liu et al., 2011; Dorigo et al., 2012)
bijzonder veelbelovend.

De nieuwe op metingen gebaseerde kaarten van
diverse belangrijke afvoerkarakteristieken ontwikkeld
in de hoofdstukken 5 en 6 zullen kosteloos ter
beschikking worden gesteld voor downloading en zullen
naar verwachting nuttig blijken voor een verscheiden-
heid aan macro-hydrologische toepassingen. Onder de
mogelijke toepassingen valt de wereldwijde diagnose
van macro-hydrologische modellen, zoals eerder aange-
toond in hoofdstuk 6 waar de nieuwe kaarten werden
vergeleken met gelijksoortige kaarten afkomstig van twee
macroschaalmodellen (Noah en PCR-GLOBWB). De
nieuwe kaarten bieden verder unieke mogelijkheden voor
het parametriseren van dergelijke macro-hydrologische
modellen, inclusief zogenoemde ‘hyperresolutie’ mod-
ellen die worden verwacht in de nabije toekomst (Wood
et al., 2011). De kaarten van de afvoerkarakteristieken
kunnen ook worden gebruikt voor het beheer van water-
voorraden en voor het vergelijken van het afvoergedrag
van verschillende stroomgebieden (bijvoorbeeld Wagener
et al., 2007). Daarnaast biedt de wereldwijde afvo-
erkaart wellicht mogelijkheden voor het corrigeren van
fouten in neerslaggegevens in bergachtige en/of vochtige
gebieden door topografische afwijkingen in het meet-
netwerk, onderschattingen wegens sneeuw, of interpo-
latiefouten (Adam et al., 2006). Bovendien kunnen de
wereldwijde afvoer- en BFI kaarten worden gecombi-
neerd om de grondwateraanvulling over de hele wereld
te schatten (bijvoorbeeld Szilagyi et al., 2003).

De methodiek beschreven in hoofdstukken 5 en 6 om
wereldwijde kaarten van diverse belangrijke afvoerkarak-
teristieken te produceren bleek zeer efficiënt en flexi-
bel en kan ook worden gebruikt om globale kaarten van
andere belangrijke afvoerkarakteristieken te produceren.
Zo zou de toevoeging van een afvoerkarakteristiek die
is gerelateerd aan de seizoenale gang van de afvoer be-
langrijk kunnen zijn om de periode waarin de sneeuw
smelt in bergachtige en/of subarctische stroomgebieden
te voorspellen. De methodiek kan wellicht ook gebruikt
worden om wereldwijde kaarten van andere belangrijke
biofysische, hydrologische of klimatologische variabelen
te produceren.
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J. M., and Jobbágy, E. G. Long-term satellite NDVI data
sets: Evaluating their ability to detect ecosystem functional
changes in South America. Sensors, 8(9):5397–5425, 2008. doi:
10.3390/s8095397.

Baltas, E. A.; Dervos, N. A., and Mimikou, M. A. Technical note:
Determination of the SCS initial abstraction ratio in an ex-
perimental watershed in Greece. Hydrology and Earth System
Sciences, 11:1825–1829, 2007.

Bannari, A.; Morin, D.; Bonn, F., and Huete, A. R. A review of
vegetation indices. Remote Sensing Reviews, 13(1–2):95–120,
1995.

Bates, B.; Kundzewicz, Z. W.; Wu, S., and Palutikof, J., edi-
tors. Climate change and water. Technical Paper of the In-
tergovernmental Panel on Climate Change. IPCC Secretariat,
Geneva, Switzerland, 2008. URL http://www.ipcc.ch/pdf/

technical-papers/climate-change-water-en.pdf.
Batey, T. Soil compaction and soil management — a review. Soil

Use and Management, 25(4):335–345, 2009.
Batjes, N. H. ISRIC-WISE derived soil properties on a 5 by 5

arc-minutes global grid (version 1.0). ISRIC - World Soil Infor-
mation, 2006.

Beck, H. E.; Bruijnzeel, L. A.; van Dijk, A. I. J. M.; McVicar,
T. R.; Scatena, F. N., and Schellekens, J. The impact of for-

97



98 REFERENCES

est regeneration on streamflow in 12 meso-scale humid tropical
catchments. Hydrology and Earth System Sciences, 17(7):2613–
2635, 2013a.

Beck, H. E; van Dijk, A. I. J. M; Miralles, D. G.; de Jeu, R. A. M.;
Bruijnzeel., L. A.; McVicar, T. R., and Schellekens, J. Global
patterns in baseflow index and recession derived from 3166 small
catchments. submitted to Water Resources Research, 2013b.

Beck, P. S. A.; Juday, G. P.; Alix, C.; Barber, V. A.; Winslow,
S. E.; Sousa, E. E.; Heiser, P.; Herriges, J. D., and Goetz,
S. J. Changes in forest productivity across Alaska consistent
with biome shift. Ecology Letters, 14(4):373–379, 2011. doi:
10.1111/j.1461-0248.2011.01598.x.

Bédard, F.; Crump, S., and Gaudreau, J. A comparison between
Terra MODIS and NOAA AVHRR NDVI satellite image com-
posites for the monitoring of natural grassland conditions in
Alberta, Canada. Canadian Journal of Remote Sensing, 32(1):
44–50, 2006.

Benstead, J. P. and Leigh, D. S. An expanded role for river net-
works. Nature Geoscience, 5(10):678–679, 2012.

Bergström, S. Development and application of a conceptual runoff
model for Scandinavian catchments. PhD thesis, SMHI Re-
ports RHO 7, Swedish Meteorological and Hydrological Insti-
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Parajka, J.; Naeimi, V.; Blöschl, G.; Wagner, W.; Merz, R., and
Scipal, K. Assimilating scatterometer soil moisture data into
conceptual hydrologic models at the regional scale. Hydrology
and Earth System Sciences Discussions, 2(6):2739–2786, 2005b.

Parés-Ramos, I. K.; Gould, W. A., and Aide, T. M. Agricultural
abandonment, suburban growth, and forest expansion in Puerto
Rico between 1991 and 2000. Ecology and Society, 13(2):1, 2008.

Park, H. S. and Sohn, B. J. Recent trends in changes of vegetation
over East Asia coupled with temperature and rainfall variations.
Journal of Geophysical Research, 115:D14101, 2010. doi: 10.
1029/2009JD012752.

Paruelo, J. M.; Garbulsky, M. F.; Guerschman, J. P., and Jobbagy,
E. G. Two decades of Normalized Difference Vegetation Index
changes in South America: identifying the imprint of global
change. International Journal of Remote Sensing, 25(14):2793–
2806, 2004. doi: 10.1080/01431160310001619526.

Pauwels, V. R. N.; Hoeben, R.; Verhoest, N. E. C.; de Troch, F. P.,
and Troch, P. A. Improvement of TOPLATS-based discharge
predictions through assimilation of ERS-based remotely sensed
soil moisture values. Hydrological Processes, 16(5):995–1013,
2002.

Peña-Arancibia, J. L. Impacts of land use change on dry season
flows across the tropics: forests as ‘sponges’ and ‘pumps’. PhD
thesis, King’s College London, 2013.

Peña-Arancibia, J. L.; Van Dijk, A. I. J. M.; Mulligan, M., and
Bruijnzeel, L. A. The role of climatic and terrain attributes in
estimating baseflow recession in tropical catchments. Hydrology
and Earth System Sciences, 14(11):2193–2205, 2010.

Peña-Arancibia, J. L.; Van Dijk, A. I. J. M.; Guerschman, J. P.;
Mulligan, M.; Bruijnzeel, L. A., and McVicar, T. R. Detecting
changes in streamflow after partial woodland clearing in two
large catchments in the seasonal tropics. Journal of Hydrology,
416(1):60–71, 2012.

Peña-Arancibia, J. L.; van Dijk, A. I. J. M.; Renzullo, L. J., and
Mulligan, M. Evaluation of precipitation estimation accuracy
in reanalyses, satellite products and an ensemble method for
regions in Australia and in south and east Asia. Journal of



107

Hydrometeorology (in press), 2013.
Pedelty, J.; Vermote, E. F.; Devadiga, S.; Roy, D.; Schaaf, C.;

Privette, J.; Pinheiro, A.; Prince, S.; Justice, C. O.; Nagol, J.;
Masuoka, E.; Brown, M. E.; Pinzon, J. E.; Tucker, C. J.; Ju,
J., and Liu, J. Generating a long-term land data record from
the AVHRR and MODIS instruments. Geoscience and Remote
Sensing Symposium, 2007. IGARSS 2007. IEEE International,
pages 1021–1025, 2007. doi: 10.1109/IGARSS.2007.4422974.

Peel, M. C.; Chiew, F. H. S.; Western, A. W., and McMahon, T. A.
Extension of unimpaired monthly streamflow data and regional-
isation of parameter values to estimate streamflow in ungauged
catchments, 2000. Report prepared for the Australian National
Land and Water Resources Audit. Centre for Environmental
Applied Hydrology, University of Melbourne, Australia.

Peterson, G. D. Scaling ecological dynamics: Self-organization, hi-
erarchical structure, and ecological resilience. Climatic Change,
44(3):291–309, 2000.

Phillips, C. B. and Scatena, F. N. Flashiness indices for urban
and rural streams in Puerto Rico. In AWRA 2010 Summer
Specialty Conference, San Juan, Puerto Rico, 2010. URL
http://www.sas.upenn.edu/lczodata/sites/www.sas.upenn.

edu.lczodata/files/ColinPhillips_AWRA%20Flash.pdf.
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Crespo, P.; Vachéa, K. B.; Frede, H. G., and Breuer, L. Model
intercomparison to explore catchment functioning: Results from
a remote montane tropical rainforest. Ecological Modelling, 239:
3–13, 2012.

Poff, N. L. R.; Allan, D.; Bain, M. B.; Karr, J. R., and Prestegaard,
K. L. The natural flow regime. BioScience, 47(11):769–784,
1997.

Ponce, V. M. and Hawkins, R. H. Runoff curve number: has it
reached maturity? Journal of Hydrologic Engineering, 1(1):
11–19, 1996.

Post, D. A. and Jakeman, A. J. Relationships between catchment
attributes and hydrological response characteristics in small
Australian mountain ash catchments. Hydrological Processes,
10(6):877–892, 1996. ISSN 1099-1085.

Potapov, P.; Hansen, M. C.; Gerrand, A. M.; Lindquist, E. J.;
Pittman, K.; Turubanova, S., and Wilkie, M. L. The global
Landsat imagery database for the FAO FRA remote sensing
survey. International Journal of Digital Earth, 4(1):2–21, 2011.
doi: 10.1080/17538947.2010.492244.

Potter, C. S. Terrestrial biomass and the effects of deforestation
on the global carbon cycle. BioScience, 49(10):769–778, 1999.

Potter, N. J.; Zhang, L.; Milly, P. C. D.; McMahon, T. A., and
Jakeman, A. J. Effects of rainfall seasonality and soil mois-
ture capacity on mean annual water balance for Australian
catchments. Water Resources Research, 41(6), 2005. doi:
10.1029/2004WR003697.

Pouliot, D.; Latifovic, R., and Olthof, I. Trends in vegetation

NDVI from 1 km AVHRR data over Canada for the period 1985-
2006. International Journal of Remote Sensing, 30(1):149–168,
2009. doi: 10.1080/01431160802302090.

Price, J. C. Timing of NOAA afternoon passes. International
Journal of Remote Sensing, 12(1):193–198, 1991. doi: 10.1080/
01431169108929644.

Price, K. Effects of watershed topography, soils, land use, and
climate on baseflow hydrology in humid regions: a review.
Progress in Physical Geography, 35(4):465–492, 2011.

Priestley, C. H. B. and Taylor, R. J. On the assessment of surface
heat flux and evaporation using large-scale parameters. Monthly
Wheater Review, 100:81–92, 1972.

Qian, W. C. Effects of deforestation on flood characteristics with
particular reference to Hainan island, China. In International
Association of Hydrological Sciences Publication 140, pages
249–258, 1983.

Quenouille, M. H. Notes on bias in estimation. Biometrika, 43
(3–4):353–360, 1956.

Quintero, M.; Wunder, S., and Estrada, R.D. For services ren-
dered? Modeling hydrology and livelihoods in Andean pay-
ments for environmental services schemes. Forest Ecology and
Management, 258(9):1871–1880, 2009.

Ramillien, G.; Famiglietti, J. S., and Wahr, J. Detection of conti-
nental hydrology and glaciology signals from GRACE: a review.
Surveys in Geophysics, 29(4–5):361–374, 2008.
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